Dimensionamento das válvulas Runlucky para uso em projetos

As válvulas são, de modo geral, caracterizadas de acordo com sua constante de fluxo, chamada de KV (sistema de unidades internacional) e CV (sistema de unidades americano). Neste post, vamos esclarecer como utilizar os valores de KV das válvulas Runlucky nos projetos de filtros e sistemas com resina de troca iônica, melhorando a precisão de cálculos de perda de carga e vazão.

Antes disso, é importante relembrar a função da constante de fluxo, que é utilizada para o dimensionamento das válvulas. Seu valor é utilizado para selecionar um dispositivo que permita o fluxo desejado, para que ocorra uma queda de pressão fixa.

A teoria sobre válvulas é extensa, e adaptações nas equações principais são empregadas para casos específicos com fluidos específicos. Para o leitor interessado em se aprofundar, sugere-se uma leitura do livro-texto da Emerson e das normas europeias que tratam sobre controle e automação.

Teoria básica sobre válvulas

A Figura 1 mostra o diagrama representativo de uma válvula qualquer instalada em uma tubulação, no qual mede-se a pressão de entrada e saída:

Figura 1 – Diagrama representativo de uma válvula genérica instalada em uma rede hidráulica.

Considerando um fluido incompressível em situação isenta de cavitação, a vazão Q pode ser calculada pela Equação 1.

(1)
Q é a vazão (m3/h), ΔP é a perda de carga na válvula (bar), ρ é a densidade (o subscrito f se refere ao fluido escoando), KV é a constante de fluxo característica da válvula e f(l) a função de abertura.

A função de abertura correlaciona como o fluxo varia em diferentes aberturas da válvula. Por exemplo, para uma válvula globo, ao conhecermos sua função de abertura podemos calcular a vazão com a válvula com 10%, 20%, 30% (entre outros valores) de abertura.

A função de abertura está associada à construção da válvula, principalmente com o plug de fechamento. Diferentes geometrias fornecem diferentes funções de abertura.

A perda de carga na válvula é calculada pela diferença entre P1 e P2.

Aplicação às válvulas Runlucky

Para ilustrar o uso dos dados de KV disponíveis nos manuais das válvulas, considere a situação de um abrandador dimensionado para uma vazão de 3,0 m3/h. Pode-se optar pelo uso das válvulas F63C3 (vazão nominal 4,0 m3/h) ou pelo modelo F130A3 (vazão nominal 6,0 m3/h).

As Figuras 2 e 3 mostram a curva de fluxo característica e o respectivo KV para os dois modelos de válvulas citados:

Figura 2 – Curva de fluxo para etapa operacional da válvula de abrandador modelo F63C3.
Figura 3 – Curva de fluxo para etapa operacional da válvula de abrandador modelo F130A3.

Podemos calcular a perda de carga necessária em cada modelo de válvula resolvendo a Equação 1 para ΔP, assim:

(2)

Como o fluido a ser abrandado é água, o termo de densidades assume valor igual a 1. Estamos interessados em saber a vazão na válvula quando sua abertura estiver completa, assim, a função de abertura também assume valor igual a 1. Assim, calculando a perda de carga para uma vazão de 3,0 m3/h, temos:

  • F63C3: ΔP = 0,92 bar
  • F130A3: ΔP = 0,39 bar

Desta forma, observamos que, se a maior perda de carga não for um problema, podemos optar pela menor válvula.

Imagine que, em vez de um abrandador, o sistema que seria montado fosse um desmineralizador de leito separado, com filtro de carvão como pré-tratamento e leito de resina mista como pós-tratamento, ambos para a mesma vazão de 3,0 m3/h.

Neste segundo caso teríamos quatro válvulas em série e, dependendo do restante do sistema hidráulico, a perda de carga poderia ser um fator decisivo. Adotar o uso de válvulas F130A3 nas colunas de resina catiônica e aniônica seria um meio de reduzir a perda de carga e diminuir a potência necessária na bomba de alimentação.

Aplicação para filtros: Vazão de retrolavagem

No projeto de filtros, as informações de KV são muito úteis para o dimensionamento das condições de retrolavagem. A Figura 4 mostra um desenho representativo da instalação de um filtro, identificando as principais informações do processo.

Figura 4 – Diagrama representativo da instalação de um filtro, identificando as principais variáveis do processo.

Com o KV da etapa de retrolavagem pode-se calcular a perda de carga necessária para obter a vazão de projeto para esta etapa. Como recomenda-se que o dreno seja direcionado a uma calha coletora, a qual efetivamente direciona o efluente gerado para o ponto de disposição final, a pressão no ponto 3 é igual a zero (tubulação descarregando sob pressão atmosférica). Assim, a própria pressão de entrada na válvula ditará a vazão na etapa de retrolavagem.

Por exemplo, considere um filtro que necessita de 12,0 m3/h de vazão de retrolavagem, e que este filtro tenha sido montado utilizando uma válvula F134A1 (vazão nominal de 8 m3/h). O valor de KV para etapa de retrolavagem nesta válvula é de 8,60, assim a perda de carga calculada é de:

  • F134A1: ΔP = 1,95 bar @ 12,0 m3/h.

Adicionando os valores de perda de carga na linha hidráulica, facilmente dimensiona-se a bomba necessária para etapa de retrolavagem.

Leia também: Problemas e Soluções para Válvulas de Abrandador da Runlucky

Compartilhe esse conteúdo:

Leia também

Importância das torres de resfriamento para indústria

As torres de resfriamento para indústria são equipamentos fundamentais em processos que demandam a remoção de calor. Elas permitem que sistemas industriais mantenham seu desempenho dentro dos parâmetros de segurança e eficiência, evitando falhas operacionais e otimizando o consumo de energia. As torres de resfriamento para indústria funcionam como sistemas de dissipação térmica, cujo princípio está baseado no resfriamento evaporativo. São aplicadas em setores como siderurgia, petroquímica, geração de energia, alimentos e bebidas, entre outros. Sua função principal é reduzir a temperatura da água de processo para que possa ser reutilizada, promovendo economia e sustentabilidade. Processo de resfriamento evaporativo O funcionamento das torres de resfriamento para indústria se dá em quatro etapas principais: 1. Entrada de água quente A água aquecida pelos processos industriais é direcionada para a torre. 2. Distribuição sobre a torre A água é aspergida ou distribuída por bicos, formando uma fina película. 3. Contato da água com o ar Ocorre a troca térmica. Parte da água evapora, retirando calor do restante. 4. Fluxo de ar Pode ser natural ou forçado por ventiladores, potencializando o processo de resfriamento. Esse mecanismo assegura que a água retorne a uma temperatura adequada para reutilização, reduzindo custos com captação de novos

Leia Mais

A importância da radiação ultravioleta no reúso de água

Desde a indústria até a irrigação urbana, a reutilização segura da água depende de processos eficazes de desinfecção, e, nesse contexto, a radiação ultravioleta (UV) tem se destacado como uma das tecnologias mais eficientes e sustentáveis. Isso porque, com a crescente escassez de recursos hídricos e a pressão por práticas sustentáveis, o reúso de água tem se consolidado como uma solução estratégica em diversos setores. Como funciona a radiação ultravioleta na desinfecção da água? A radiação ultravioleta, especialmente na faixa UV-C (200–280 nm), atua inativando microrganismos ao danificar seu DNA, impedindo que se reproduzam. O comprimento de onda mais eficaz para esse processo é 254 nm, emitido por lâmpadas de mercúrio de baixa pressão, amplamente utilizadas nos sistemas UV comerciais. Essa ação torna a radiação UV uma barreira final altamente eficaz contra patógenos remanescentes após tratamentos físico-químicos e biológicos, contribuindo para a segurança sanitária da água de reúso. Mesmo após etapas convencionais de tratamento, ainda é comum a presença de coliformes termorresistentes na água. A radiação ultravioleta é capaz de reduzir significativamente essa carga microbiológica, permitindo que a água tratada atenda aos padrões exigidos por normas como a Resolução CONAMA nº 357/2005. Tabela: limites de coliformes termorresistentes por tipo de

Leia Mais