Dimensionamento das válvulas Runlucky para uso em projetos

As válvulas são, de modo geral, caracterizadas de acordo com sua constante de fluxo, chamada de KV (sistema de unidades internacional) e CV (sistema de unidades americano). Neste post, vamos esclarecer como utilizar os valores de KV das válvulas Runlucky nos projetos de filtros e sistemas com resina de troca iônica, melhorando a precisão de cálculos de perda de carga e vazão.

Antes disso, é importante relembrar a função da constante de fluxo, que é utilizada para o dimensionamento das válvulas. Seu valor é utilizado para selecionar um dispositivo que permita o fluxo desejado, para que ocorra uma queda de pressão fixa.

A teoria sobre válvulas é extensa, e adaptações nas equações principais são empregadas para casos específicos com fluidos específicos. Para o leitor interessado em se aprofundar, sugere-se uma leitura do livro-texto da Emerson e das normas europeias que tratam sobre controle e automação.

Teoria básica sobre válvulas

A Figura 1 mostra o diagrama representativo de uma válvula qualquer instalada em uma tubulação, no qual mede-se a pressão de entrada e saída:

Figura 1 – Diagrama representativo de uma válvula genérica instalada em uma rede hidráulica.

Considerando um fluido incompressível em situação isenta de cavitação, a vazão Q pode ser calculada pela Equação 1.

(1)
Q é a vazão (m3/h), ΔP é a perda de carga na válvula (bar), ρ é a densidade (o subscrito f se refere ao fluido escoando), KV é a constante de fluxo característica da válvula e f(l) a função de abertura.

A função de abertura correlaciona como o fluxo varia em diferentes aberturas da válvula. Por exemplo, para uma válvula globo, ao conhecermos sua função de abertura podemos calcular a vazão com a válvula com 10%, 20%, 30% (entre outros valores) de abertura.

A função de abertura está associada à construção da válvula, principalmente com o plug de fechamento. Diferentes geometrias fornecem diferentes funções de abertura.

A perda de carga na válvula é calculada pela diferença entre P1 e P2.

Aplicação às válvulas Runlucky

Para ilustrar o uso dos dados de KV disponíveis nos manuais das válvulas, considere a situação de um abrandador dimensionado para uma vazão de 3,0 m3/h. Pode-se optar pelo uso das válvulas F63C3 (vazão nominal 4,0 m3/h) ou pelo modelo F130A3 (vazão nominal 6,0 m3/h).

As Figuras 2 e 3 mostram a curva de fluxo característica e o respectivo KV para os dois modelos de válvulas citados:

Figura 2 – Curva de fluxo para etapa operacional da válvula de abrandador modelo F63C3.
Figura 3 – Curva de fluxo para etapa operacional da válvula de abrandador modelo F130A3.

Podemos calcular a perda de carga necessária em cada modelo de válvula resolvendo a Equação 1 para ΔP, assim:

(2)

Como o fluido a ser abrandado é água, o termo de densidades assume valor igual a 1. Estamos interessados em saber a vazão na válvula quando sua abertura estiver completa, assim, a função de abertura também assume valor igual a 1. Assim, calculando a perda de carga para uma vazão de 3,0 m3/h, temos:

  • F63C3: ΔP = 0,92 bar
  • F130A3: ΔP = 0,39 bar

Desta forma, observamos que, se a maior perda de carga não for um problema, podemos optar pela menor válvula.

Imagine que, em vez de um abrandador, o sistema que seria montado fosse um desmineralizador de leito separado, com filtro de carvão como pré-tratamento e leito de resina mista como pós-tratamento, ambos para a mesma vazão de 3,0 m3/h.

Neste segundo caso teríamos quatro válvulas em série e, dependendo do restante do sistema hidráulico, a perda de carga poderia ser um fator decisivo. Adotar o uso de válvulas F130A3 nas colunas de resina catiônica e aniônica seria um meio de reduzir a perda de carga e diminuir a potência necessária na bomba de alimentação.

Aplicação para filtros: Vazão de retrolavagem

No projeto de filtros, as informações de KV são muito úteis para o dimensionamento das condições de retrolavagem. A Figura 4 mostra um desenho representativo da instalação de um filtro, identificando as principais informações do processo.

Figura 4 – Diagrama representativo da instalação de um filtro, identificando as principais variáveis do processo.

Com o KV da etapa de retrolavagem pode-se calcular a perda de carga necessária para obter a vazão de projeto para esta etapa. Como recomenda-se que o dreno seja direcionado a uma calha coletora, a qual efetivamente direciona o efluente gerado para o ponto de disposição final, a pressão no ponto 3 é igual a zero (tubulação descarregando sob pressão atmosférica). Assim, a própria pressão de entrada na válvula ditará a vazão na etapa de retrolavagem.

Por exemplo, considere um filtro que necessita de 12,0 m3/h de vazão de retrolavagem, e que este filtro tenha sido montado utilizando uma válvula F134A1 (vazão nominal de 8 m3/h). O valor de KV para etapa de retrolavagem nesta válvula é de 8,60, assim a perda de carga calculada é de:

  • F134A1: ΔP = 1,95 bar @ 12,0 m3/h.

Adicionando os valores de perda de carga na linha hidráulica, facilmente dimensiona-se a bomba necessária para etapa de retrolavagem.

Leia também: Problemas e Soluções para Válvulas de Abrandador da Runlucky

Compartilhe esse conteúdo:

Leia também

Água desmineralizada para caldeiras de alta pressão

Caldeiras de alta pressão são equipamentos destinados à produção e acumulação de vapor sob temperaturas e pressão superiores às do ambiente. O vapor produzido possui ampla aplicação em indústrias, abrangendo desde a geração de energia elétrica e movimentação de máquinas até aquecimento, limpeza e esterilização de equipamentos e superfícies. Devido às condições extremas de operação, a necessidade de controle e alta qualidade de água de alimentação se tornam essenciais para evitar adversidades operacionais, redução de eficiência e até mesmo a ocorrência de catástrofes maiores. A presença de íons de cálcio (Ca2+), magnésio (Mg2+) e sódio (Na+) na forma de carbonatos, bicarbonatos, sulfatos, cloretos e hidróxidos podem levar à incrustação nos sistemas, dificultando a troca de calor e o escoamento do fluido. A corrosão, por sua vez, é ocasionada pela presença de gases dissolvidos, como O₂ e CO₂, que reduzem a resistência mecânica dos materiais metálicos e comprometem a estrutura das caldeiras de alta pressão. A presença de sílica, especialmente em caldeiras de alta pressão, também é crítica, pois, nessas condições, a sílica pode volatilizar e ser arrastada com o vapor, provocando incrustações nas pás de turbinas de geração de energia, causando desbalanceamento, danos mecânicos e degradação da qualidade do vapor.

Leia Mais

Remoção de nitrato por troca iônica: a resina ideal e princípios de funcionamento

A remoção de nitrato (NO3–) presente na água utilizada para consumo humano além de necessária, é regulamentada pela portaria n° 888 do Ministério da Saúde, indicando que a concentração da substância deve ser mantida abaixo de 10 mg/L (em base N) de modo a evitar danos à saúde. Comumente se encontram fontes de água subterrânea com teores de NO3– acima do permitido, e quando isto ocorre, a troca iônica é sempre uma das alternativas consideradas como rota tecnológica para a remoção de nitrato. Para esta aplicação, as resinas aniônicas são aplicadas no ciclo Cl–, e após sua exaustão, são regeneradas com soluções de NaCl. As reações de troca iônica e regeneração são apresentadas abaixo. R representa a resina e seu grupo funcional sem fazer distinção quanto ao tipo de grupo funcional. Dois tipos de resinas podem ser utilizados para remoção de nitrato, sendo elas as Aniônicas Fortemente Básicas de tipo I (SBA Tipo I) e as resinas seletivas, sendo estas referidas como resinas com melhor desempenho e eficiência na remoção da substância. Em geral, a escolha entre esses dois tipos de resinas é feita levando em consideração a química da água, em especial a presença de sulfato (SO42-). Os fatores

Leia Mais