Reuso de Água Condensada de Condicionadores de Ar

Sistemas de refrigeração são baseados em evaporadores, onde fluidos refrigerantes mudam do estado líquido para vapor, refrigerando o sistema. O ar então é soprado pelo evaporador, que possui trocadores de calor, tornando-o refrigerando. A umidade presente no ar é condensada e normalmente é conduzida à rede de esgoto pluvial. Alguns prédios comerciais e industriais estão começando a capturar, tratar e utilizar esta água em seus processos e não mais descartá-la.

A água proveniente de sistemas de ar condicionado é pura, destilada e gelada. Normalmente ela precisa de pouco tratamento. Quando é destinada a torres de resfriamento ela já está refrigerada, reduzindo o consumo de energia. Dependendo da forma construtiva do equipamento e do local de instalação, esta água dispensa tratamento e já está pronta para o uso.

Outra grande vantagem em utilizar a água de condensação de sistemas de ar condicionado é que ela possui baixíssima presença de sais minerais, podendo assim aumentar o ciclo de concentração em torres de resfriamento, diminuindo a necessidade de descarte de água nestes sistemas.

Em grandes prédios comerciais, a recuperação de condensado geralmente produz água suficiente para suprir toda necessidade de água de reposição de torres de resfriamento. Em regiões de climas tropicais, que possuem elevada temperatura e umidade, recuperação de condensado é uma ótima opção. Em São Paulo, onde a umidade média do ar é superior a 70%, um estudo realizado em um centro comercial com área de aproximadamente 22.000 m² apresentou capacidade recuperação de 6.000 L de água por dia. O projeto de reuso desta água contempla o tratamento, armazenagem e distribuição da mesma.

A quantidade de água condensada produzida depende da temperatura e umidade, tanto externa quanto interna, bem como do tamanho do sistema de refrigeração local. Uma aproximação pode ser adotada para se ter ideia inicial da capacidade de captação de água para grandes empreendimentos. Durante o verão de 20 a 30 l/h para cada 1.000 m² de área refrigerada.

Apesar da água ter um grau de pureza relativamente elevado, é necessário se atentar ao tratamento adequado que deve ser realizado para cada aplicação, pois contaminações microbiológicas ou água com pH muito baixo podem ser produzidas.

Para todas as situações, sejam aplicações comerciais ou industriais, a LITER possui know-how e um corpo técnico dedicado a encontrar a melhor solução para a sua aplicação. Entre em contato conosco para que possamos auxiliá-lo a encontrar a melhor solução.

Compartilhe esse conteúdo:

Leia também

Remoção de nitrato por troca iônica: a resina ideal e princípios de funcionamento

A remoção de nitrato (NO3–) presente na água utilizada para consumo humano além de necessária, é regulamentada pela portaria n° 888 do Ministério da Saúde, indicando que a concentração da substância deve ser mantida abaixo de 10 mg/L (em base N) de modo a evitar danos à saúde. Comumente se encontram fontes de água subterrânea com teores de NO3– acima do permitido, e quando isto ocorre, a troca iônica é sempre uma das alternativas consideradas como rota tecnológica para a remoção de nitrato. Para esta aplicação, as resinas aniônicas são aplicadas no ciclo Cl–, e após sua exaustão, são regeneradas com soluções de NaCl. As reações de troca iônica e regeneração são apresentadas abaixo. R representa a resina e seu grupo funcional sem fazer distinção quanto ao tipo de grupo funcional. Dois tipos de resinas podem ser utilizados para remoção de nitrato, sendo elas as Aniônicas Fortemente Básicas de tipo I (SBA Tipo I) e as resinas seletivas, sendo estas referidas como resinas com melhor desempenho e eficiência na remoção da substância. Em geral, a escolha entre esses dois tipos de resinas é feita levando em consideração a química da água, em especial a presença de sulfato (SO42-). Os fatores

Leia Mais

Monitoramento de sistemas de troca iônica

Acompanhar o desempenho do sistema é fundamental para garantir que as resinas de troca iônica funcionem bem e tenham uma longa vida útil, resultando em água tratada de boa qualidade. Para verificar se o sistema está em boas condições, é importante medir alguns parâmetros da água que entra e no momento que sai. Nos sistemas de desmineralização, é recomendável monitorar a condutividade da água de entrada, ajudando a detectar qualquer desvio dos valores esperados e analisar a água de saída, que informa sobre a eficácia do tratamento e a necessidade de regeneração. Outro ponto importante é medir o pH após a coluna catiônica, visto que um pH adequado deve estar entre 2 e 4 durante o funcionamento normal. Com o tempo, esse pH tende a subir, especialmente quando o sistema está se aproximando do final da campanha. Medir o pH após a coluna aniônica também é importante; ele deve estar próximo da neutralidade. Para sistemas de abrandamento, desnitrificação e desfluoretação, é aconselhável analisar a concentração de íons indesejáveis tanto na água de entrada quanto na água tratada. Isso ajuda a verificar a eficácia do tratamento e a necessidade de regeneração. Além disso, é fundamental monitorar alguns parâmetros durante todas as

Leia Mais