Conservação de resinas de troca iônica na época de entressafra

Nas usinas de açúcar e etanol, a conservação de resinas de troca iônica durante a entressafra é um fator essencial para garantir o desempenho dos sistemas de desmineralização de água na próxima safra. Durante o período de inatividade, sem os devidos cuidados, as resinas podem sofrer degradação, contaminação e perda de capacidade, impactando diretamente a eficiência operacional e os custos da usina.

Problemas comuns na conservação de resinas neste período

Quando as resinas de troca iônica ficam paradas por longos períodos sem a conservação adequada, podem ocorrer diversos problemas, como:

– Crescimento microbiológico: a presença de umidade e nutrientes na resina favorece o desenvolvimento de bactérias, fungos e biofilme, comprometendo sua capacidade de troca iônica.

– Ressecamento e fissuras: a exposição ao ar pode levar ao ressecamento das esferas de resina, resultando em microfissuras que reduzem sua eficiência e durabilidade.

– Contaminação com ferro e sílica: impurezas presentes na água ou em equipamentos podem impregnar as resinas, afetando seu desempenho.

– Perda de capacidade de troca iônica: a falta de um método adequado de conservação pode acelerar o desgaste das resinas, aumentando a necessidade de reposição e os custos operacionais.

Métodos recomendados para conservação de resinas de troca iônica

A estratégia de conservação de resinas deve ser escolhida de acordo com o tempo de parada e as condições ambientais. Entre os principais métodos utilizados, destacam-se:

1. Armazenamento úmido com solução de salmoura

Esse método é ideal para períodos longos de entressafra, entre 3 e 6 meses. A solução salina protege as resinas contra o crescimento microbiológico e evita o ressecamento. No entanto, é essencial monitorar a qualidade da salmoura e substituí-la periodicamente para evitar degradação.

2. Armazenamento em água desmineralizada

Caso a conservação em salmoura não seja viável, as resinas podem ser armazenadas em água desmineralizada, desde que o período de inatividade seja inferior a 48 horas. Para paradas mais longas, é necessário monitoramento microbiológico frequente e substituição da água sempre que necessário.

Alguns cuidados adicionais na conservação de resinas devem ser observados, como, por exemplo, evitar contaminação com óleo e ferro, mantê-las em local protegido de luz e calor excessivo e realizar monitoramento periódico.

Como a Liter pode ajudar na conservação de resinas?

A Liter oferece suporte especializado para usinas que desejam garantir a qualidade e longevidade de suas resinas de troca iônica. Contamos com um laboratório especializado na análise de resinas, permitindo identificar a integridade do material e propor soluções personalizadas para sua conservação. Além disso, nossa equipe técnica está preparada para orientar boas práticas de armazenamento e manutenção, garantindo a melhor performance dos sistemas de desmineralização de água.

Precisa de ajuda para otimizar a conservação das suas resinas? Entre em contato com a Liter e conte com nossa expertise!

Leia também: Por que analisar sua resina de troca iônica?

Compartilhe esse conteúdo:

Leia também

Problemas causados por fouling em tubos de quartzo de sistemas UV

Um dos maiores desafios operacionais enfrentados em sistemas ultravioletas é o fouling em tubos de quartzo, um fenômeno que reduz a eficiência do processo de desinfecção e gera custos adicionais de manutenção. É bom contextualizar a importância desse processo para o tratamento de água e efluentes, uma vez que os reatores ultravioletas (UV) têm conquistado espaço devido à sua alta eficácia na desinfecção contra uma ampla variedade de microrganismos, como bactérias, vírus, protozoários, algas e patógenos resistentes ao cloro, como Cryptosporidium, Giardia, Legionella e C. parvum. O que é o fouling em tubos de quartzo? O fouling é o acúmulo de materiais sobre a superfície externa dos tubos de quartzo, formando uma barreira que reduz a passagem da radiação ultravioleta. Isso compromete a irradiância da lâmpada e, consequentemente, a eficiência da desinfecção. Esse acúmulo pode ocorrer por diferentes mecanismos, de forma isolada ou combinada: 1. Fouling inorgânico Incrustações de carbonatos de cálcio e magnésio, sílica, ferro e manganês. 2. Fouling orgânico Deposição de matéria orgânica natural ou subprodutos de desinfecção. 3. Biofouling Crescimento de biofilmes microbiológicos em ambientes ricos em nutrientes. 4. Fouling particulado Acúmulo de sólidos suspensos em sistemas com pré-filtração deficiente. Veja alguns exemplos visuais de fouling em

Leia Mais

Reaproveitamento de água em torres de resfriamento

O reaproveitamento de água tem se tornado uma prática essencial para empresas que buscam sustentabilidade e eficiência operacional. Em sistemas de torres de resfriamento, onde há grande consumo de água, a osmose reversa (OR) se destaca como uma tecnologia estratégica para reduzir custos e otimizar recursos hídricos. Ao aplicar a OR para o reaproveitamento de água em torres de resfriamento, é possível alcançar benefícios diretos como: 1. Redução da necessidade de água fresca Menos captação de recursos naturais e menores despesas com abastecimento. 2. Controle rigoroso dos sólidos dissolvidos e contaminantes Isto prolonga a vida útil das torres e evita problemas de incrustação e corrosão. 3. Melhoria na eficiência das torres de resfriamento Com água de maior qualidade, o desempenho térmico é otimizado, reduzindo custos de manutenção. Membranas de alto desempenho para condições severas O sucesso do reaproveitamento de água depende do uso de membranas adequadas. Algumas opções avançadas e disponíveis na Liter são: – MaxRO: projetada para oferecer alta rejeição de sais e eficiência em sistemas robustos; – LG BW 400 R G2: ideal para garantir excelente desempenho em diferentes qualidades de água; – LG BW 400 AFR G2: com maior resistência a incrustações e incrustantes, prolongando o tempo

Leia Mais