Análises periféricas em resinas de troca iônica: um importante acompanhamento

Nos textos anteriores, descrevemos a importância e as aplicações das análises básicas e avançadas realizadas em resinas de troca iônica. Além destas já abordadas, a Liter oferece também análises periféricas em resinas, que podem ser utilizadas para complementar o monitoramento da sua performance.

As análises periféricas em resinas podem ser divididas em dois grupos:

Análises realizadas nas resinas

– Ferro qualitativo: uma análise realizada em resinas catiônicas visando a identificação de contaminação por ferro. Através dela é possível constatar a presença de ferro no interior da resina e a gravidade da contaminação de forma qualitativa.

– Matéria orgânica qualitativa: esta análise é realizada em resinas aniônicas visando a identificação de contaminação por orgânicos. Ela possibilita detectar a presença de matéria orgânica na resina e seu grau de deposição de forma qualitativa.

Análises realizadas nos regenerantes

As análises que têm foco em regenerantes são auxiliares e podem ser empregadas para verificar possíveis problemas com a qualidade dos produtos químicos utilizados na etapa de regeneração das resinas. O uso de regenerantes fora da concentração recomendada pode levar a decréscimo da capacidade operacional das resinas, e a depender do tipo de contaminante presente, pode danificar a estrutura da resina.

As análises periféricas ligadas a regenerantes das resinas de troca iônica são:

– Teor de HCl ou H2SO4: realizada para identificar a concentração do ácido utilizado para regeneração das resinas.

– Teor de NaOH: análise que permite constatar a concentração da base utilizada para regeneração das resinas.

Em geral, as análises periféricas em resinasfeitas pela Liter complementam as informações adquiridas durante o seu monitoramento e podem, rapidamente, determinar possíveis desvios de eficiência no processo de troca iônica.

Leia também: Por que analisar sua resina de troca iônica?

Compartilhe esse conteúdo:

Leia também

Problemas e soluções em sistemas UV

Neste artigo, você vai ver os problemas mais comuns e as soluções em sistemas UV para diagnosticar rapidamente a causa raiz, e como a Liter atua no diagnóstico e otimização para recuperar eficiência e segurança microbiológica com ações objetivas. Isso é importante porque a desinfecção por luz ultravioleta (UV) se consolidou como uma alternativa forte a métodos químicos por não gerar subprodutos e não alterar sabor e odor. Na prática, porém, o desempenho do UV não depende só de ligar o equipamento, mas sim da dose entregue, qualidade da água, hidráulica, manutenção e controle. Como funcionam as soluções em sistemas UV na desinfecção Em sistemas UV, a água passa por uma câmara onde a radiação ultravioleta (tipicamente UVC) atinge os microrganismos e os inativa, impedindo sua multiplicação. Para isso acontecer de forma consistente, o sistema precisa entregar uma dose adequada, que depende principalmente de: – Transmissão UV (UVT) e qualidade óptica da água (turbidez, cor, matéria orgânica, ferro/manganês etc.); – Potência efetiva da lâmpada (envelhecimento, balastro, estabilidade elétrica); – Hidráulica (vazão real, tempo de contato, curtos-circuitos hidráulicos, mistura); – Limpeza da luva de quartzo (fouling e incrustação “roubam” UV). É aqui que entram as soluções em sistemas UV: identificar qual

Leia Mais

Como aumentar o ciclo de concentração em caldeiras

Entender e otimizar o ciclo de concentração em caldeiras é uma das formas mais diretas de reduzir purgas, economizar água/energia e proteger o equipamento. Isso porque mesmo com o tratamento convencional da água de alimentação, ainda podem permanecer pequenas quantidades de sais dissolvidos. Dentro da caldeira, a água evapora para gerar vapor, e os sais não evaporam junto. Resultado: eles se concentram no interior do sistema, podendo causar incrustação, danos estruturais, perda de eficiência e aumento no consumo de combustível. O que é o ciclo de concentração em caldeiras? O ciclo de concentração em caldeiras é a relação entre a concentração de um determinado íon (ou parâmetro) na água da caldeira e a concentração desse mesmo íon na água de alimentação. De forma prática: ele indica quantas vezes os sólidos dissolvidos estão mais concentrados dentro da caldeira em comparação à água que entra. A expressão mais comum é: N = [C]caldeira / [C]alimentação Onde: N = número de ciclos (adimensional) [C]caldeira = concentração de um íon na caldeira [C]alimentação = concentração do mesmo íon na água de alimentação A quantidade máxima de ciclos permitidos deve respeitar os limites do fabricante (exemplo: condutividade, sílica, alcalinidade etc.). Quanto maior o ciclo de

Leia Mais