Análises básicas em resinas de troca iônica: avaliando sua performance

As análises básicas em resinas de troca iônica realizadas pela Liter foram citadas no artigo “Por que analisar sua resina de troca iônica?”, bem como a sua importância para o acompanhamento da eficiência do processo e triagem de problemas operacionais. Agora, neste artigo, serão apresentados, detalhadamente, quais são os motivos para realizar cada análise e qual é a interpretação dos resultados.

Tipos de análises básicas em resinas de troca iônica

1 – Teor de umidade

O teor de umidade reflete a quantidade de água retida no interior das esferas de resina. Esta análise pode identificar a possível oxidação da estrutura polimérica da resina ou a presença de contaminantes na parte interna das esferas. Um aumento no teor de umidade pode indicar que as ligações cruzadas de divinilbenzeno no interior das esferas de resina foram oxidadas devido à exposição a agentes oxidantes, como, por exemplo: cloro livre, dióxido de cloro, ozônio, entre outros.

A quebra das ligações poliméricas da resina faz com que a força elástica da matriz polimérica diminua, permitindo a entrada de mais moléculas de água no interior da esfera. Em contrapartida, a presença de contaminantes no interior da resina, como Fe3+ ou matéria orgânica, diminui o espaço entre as cadeias poliméricas, fazendo com que o teor de umidade diminua.

2 – Densidade do leito

Esta análise mede a densidade de empacotamento das esferas de resina em uma coluna cilíndrica. A redução no valor da densidade pode indicar um maior inchaço das esferas, ocasionados por contaminação ou oxidação da estrutura polimérica. O aumento da densidade aponta a presença de finos, trincas ou esferas quebradas.

3 – Microscopia ótica e verificação de quebrados

Através da observação em microscópio ótico, torna-se possível a identificação de contaminantes ou defeitos nas esferas. Diferentes tipos de contaminantes podem ser reconhecidos devido ao formato, cor e padrão. Também podem ser constatadas trincas, fragmentos e outros defeitos estruturais da resina, permitindo a avaliação quantitativa das esferas viáveis. Desta forma, a identificação de amostras com avarias severas permite a recomendação de troca da resina. A Figura 1 apresenta uma microscopia realizada na resina catiônica KH-80 após 1 ano de operação em abrandamento de água subterrânea.

Figura 1 – Resina catiônica KH-80 após 1 ano de operação em abrandamento de água de poço.

4 – Capacidade total de troca iônica

Tem como objetivo determinar a capacidade máxima de troca iônica da resina em análise. Após esta determinação, e através da comparação com o valor nominal para a resina sem uso, é possível identificar a perda de eficiência de remoção de íons de forma quantitativa.

As causas da perda de performance não são identificadas por esta análise, sendo necessária a realização das outras análises básicas em resinas já descritas, bem como a investigação do processo. A constatação do valor da capacidade total permite determinar a necessidade de troca da resina.

5 – Granulometria

Este tipo de análise consiste em separar as resinas em diferentes frações, de acordo com o diâmetro de cada esfera. O diâmetro médio, coeficiente de uniformidade e distribuição granulométrica, obtidos na análise de granulometria, permitem a avaliação do estado físico das esferas de resina. Desvios do coeficiente de uniformidade e do diâmetro médio podem indicar quebras e geração de finos durante a operação do processo. A Figura 2 apresenta a distribuição granulométrica da resina KH-80 após 1 ano de operação para o abrandamento de água de poço.

Figura 2 – Distribuição granulométrica para resina KH-80 após 1 ano de operação em abrandamento de água de poço.

A Tabela 1 apresenta o comparativo dos diâmetros efetivo (d90), médio (d50) e com retenção de 40% (d40), além do coeficiente de uniformidade calculado utilizando os dados obtidos por meio da análise de granulometria.

Tabela 1 – Parâmetros granulométricos obtidos para resina KH-80 após 1 ano de operação e comparação com os valores de referência para resina KH-80 sem uso.

De forma geral, o conjunto de análises básicas em resinas permite a identificação do estado do material, assim como a investigação das possíveis fontes de perda de eficiência, quando realizadas de forma conjunta. A Liter possui uma infraestrutura adequada para a realização das análises, além de uma avaliação e interpretação de dados que oferecem o melhor serviço aos seus clientes.

Leia também: Análises avançadas em resinas de troca iônica: além do básico

Compartilhe esse conteúdo:

Leia também

Como escolher entre resinas aniônicas fracas e fortes?

As resinas aniônicas desempenham um papel fundamental nos sistemas de troca iônica destinados à remoção de ânions como cloretos, sulfatos, nitratos e sílica. Utilizadas em indústrias, hospitais, laboratórios e diversos processos críticos, elas garantem a qualidade da água desmineralizada, atendendo padrões rigorosos de pureza. Na prática, existem dois grandes grupos: resinas aniônicas fracas (WBA) e resinas aniônicas fortes (SBA). Apesar de desempenharem funções complementares, cada uma delas possui características específicas que influenciam diretamente a eficiência do sistema e o custo operacional. Neste artigo, você entenderá essas diferenças e descobrirá como escolher a resina ideal para cada aplicação, além de ver como a Liter apoia seus projetos com engenharia especializada e soluções completas. O que são resinas aniônicas e como funcionam? As resinas aniônicas são materiais poliméricos compostos por grupos funcionais com carga positiva que atraem e trocam íons negativos presentes na água. Durante a operação, esses grupos capturam ânions indesejados, retendo-os em sua matriz para liberar outro íon no lugar, geralmente hidroxila (OH⁻). Essa troca é essencial para alcançar níveis elevados de desmineralização, principalmente quando combinada com resinas catiônicas em sistemas de duas etapas ou de ciclo completo. 1. Resinas Aniônicas Fracas (WBA) As resinas aniônicas fracas possuem grupos funcionais

Leia Mais

Desinfecção avançada com ultravioleta e cloração: combinar tecnologias eleva a segurança da água

Usar ultravioleta e cloração de forma combinada cria uma barreira múltipla capaz de ampliar o espectro de inativação de microrganismos, reduzir riscos operacionais e otimizar custos. Isso porque a desinfecção representa a última “trava” de segurança no tratamento de água e onde falhas custam caro. A seguir, você entende como funciona, quando aplicar e quais cuidados de projeto e operação adotamos na Liter. Ultravioleta e cloração: entregas e limites de cada tecnologia A radiação ultravioleta (UV) atua danificando o material genético (DNA/RNA) por fotólise, impedindo a replicação microbiana. – Pontos fortes: ação imediata; não gera subprodutos químicos; eficiente contra cistos e oocistos (ex.: Giardia, Cryptosporidium). – Pontos de atenção: não deixa residual e depende de dose (mJ/cm²) e UVT da água; subdosagem pode permitir reativação. Já a cloração atua com substâncias como HOCl/OCl⁻ que oxidam estruturas celulares e enzimas; deixa residual que protege reservatórios e redes contra recontaminação. – Pontos fortes: custo competitivo; controle de biofilme/alga; essencial para distribuição e reúso com armazenamento. – Pontos de atenção: alguns organismos são mais resistentes; pode formar subprodutos (ex.: THMs/HAA5) quando mal dosado ou em água com altos precursores orgânicos; sensível a pH (HOCl é mais eficaz em pH levemente ácido/neutro). Por que

Leia Mais