Tipos de montagem e operação em sistema de filtração

Considere o sistema de filtração ilustrado pela Figura 1. Para este sistema, o filtro recebe água oriunda de um poço, que é filtrada e armazenada em um reservatório para posteriormente ser consumida.

Figura 1 – Sistema de filtração com filtro único.

Podemos denominar este tipo de sistema como “Sistema de Filtro Único” baseados nas características operacionais. Quando utilizamos a palavra “Único” não nos referimos à quantidade de filtros instalados em série. Por exemplo, se este sistema for constituído por um filtro de zeólita ou então pela junção de um filtro de zeólita e carvão, continuará a ser chamado de “Sistema de Filtro Único”.

Esta denominação se origina pelo fato de que, se o filtro iniciar a etapa de retrolavagem, o fornecimento de água filtrada ao reservatório será interrompido. Logo, se o usuário final continuar consumindo água, o tamanho do reservatório deverá ser capaz de fornecê-la até o término da retrolavagem e o retorno da produção de água filtrada.

Caso o fornecimento de água não possa ser interrompido por motivos específicos do processo, uma alternativa seria utilizar o sistema de filtração ilustrado na Figura 2.

Figura 2 – Sistema de filtração com filtro reserva.

Para este tipo de sistema, o filtro reserva entra em operação quando o filtro principal inicia a retrolavagem. Após o término deste processo, o filtro principal passa a atuar como filtro reserva, aguardando a próxima retrolavagem para iniciar a atuação. Neste tipo de montagem, pode-se garantir o fornecimento contínuo de água, sendo possível realizar manutenções nos filtros sem perder a produtividade.

Outra maneira de manter o abastecimento de água durante as retrolavagens e diminuir o tamanho dos filtros ociosos é implementando um Sistema de Múltiplos Tanques (SMT) de acordo com o ilustrado na Figura 3.

Figura 3 – Sistema de múltiplos tanques (SMT) aplicados à filtração de água.

Para este tipo de sistema, a vazão total de água que precisa ser tratada é dividida e utiliza-se filtros em paralelo para tratar o montante total requisitado. Aqui, os filtros podem ser intertravados pelo sistema de automação para não entrarem em retrolavagem ao mesmo tempo.

Assim, apenas um filtro entra em retrolavagem por vez e sua vazão de processo é redistribuída entre os filtros operantes, mantendo a produção total de água.

Vantagens e desvantagens dos sistemas de filtração

Os diferentes sistemas de filtração apresentados possuem vantagens e desvantagens, resumidas no Quadro 1.

SistemaVantagemDesvantagem
   
Filtro únicoMenor custo de investimento; Montagem simples; Baixo nível de automação e instrumentação; Simplicidade de startup.Maiores tanques pulmões; Sem produção de água em casos de manutenção.
Sistema com Filtro ReservaMenores tanques pulmões; Segurança para o processo; Sistema extra em caso de manutenções; Simplicidade de startup; Baixo uso de instrumentação; Produção de água de forma contínua.Maior custo de investimento; Montagem com complexidade moderada; Necessidade de automação entre os sistemas; Sistema extra parado por longos períodos.
Sistema de Múltiplos TanquesMenores tanques pulmões; Segurança para o processo; Possibilidade de manutenção pontual sem perda de produção; Evita sistemas onerosos parados; Possibilidade de produção de água contínua; Maior uso de instrumentos; Automação intermediária requisitada.Maior custo com instrumentação e automação; Maior complexidade de startup e ajuste operacional; Necessidade de maiores espaços para instalação; Maior complexidade de montagem.
Quadro 1 – Vantagens e desvantagens a respeito dos três tipos de sistemas abordados.

Conclui-se que para tomar a decisão mais acertada de qual tipo de sistema de filtração melhor se adequa à determinada demanda, devem ser levantadas as necessidades a serem supridas por ele. A Liter é uma empresa que é especialista em tratamento de água e conta com soluções para as mais diferentes demandas quanto a sistemas de filtração. Entre em contato conosco e nos diga como podemos ajudá-lo.

Leia também: Análises de água recomendadas para projeto de sistemas de remoção de ferro e manganês

Compartilhe esse conteúdo:

Leia também

Normalização dos dados de osmose reversa

A normalização dos dados de osmose reversa (OR) é um processo essencial na análise e no monitoramento do desempenho de sistemas de membranas. Esse processo permite avaliar o estado real das membranas e identificar tendências de deterioração ou incrustação, eliminando influências externas que podem mascarar a interpretação dos resultados. Além disso, consiste em ajustar os dados operacionais brutos do sistema de osmose reversa para uma condição de referência, levando em consideração variáveis que afetam diretamente o desempenho do sistema, como temperatura da água de alimentação, pressão de operação, vazão e salinidade. A partir desses ajustes, os parâmetros fundamentais do sistema (como fluxo permeado, rejeição de sais e diferencial de pressão) são convertidos para valores que representam uma condição padronizada, permitindo comparações consistentes ao longo do tempo. O que a normalização dos dados de osmose reversa visa resolver? Os sistemas de osmose reversa são dinâmicos e estão sujeitos a variações de operação e qualidade da água de alimentação. Sem a normalização dos dados de osmose reversa, seria difícil interpretar corretamente o desempenho do sistema, pois mudanças nas condições operacionais podem influenciar os dados sem que haja, de fato, um problema no sistema. A normalização visa solucionar principalmente: 1. Influência da temperatura

Leia Mais

Água desmineralizada para caldeiras de alta pressão

Caldeiras de alta pressão são equipamentos destinados à produção e acumulação de vapor sob temperaturas e pressão superiores às do ambiente. O vapor produzido possui ampla aplicação em indústrias, abrangendo desde a geração de energia elétrica e movimentação de máquinas até aquecimento, limpeza e esterilização de equipamentos e superfícies. Devido às condições extremas de operação, a necessidade de controle e alta qualidade de água de alimentação se tornam essenciais para evitar adversidades operacionais, redução de eficiência e até mesmo a ocorrência de catástrofes maiores. A presença de íons de cálcio (Ca2+), magnésio (Mg2+) e sódio (Na+) na forma de carbonatos, bicarbonatos, sulfatos, cloretos e hidróxidos podem levar à incrustação nos sistemas, dificultando a troca de calor e o escoamento do fluido. A corrosão, por sua vez, é ocasionada pela presença de gases dissolvidos, como O₂ e CO₂, que reduzem a resistência mecânica dos materiais metálicos e comprometem a estrutura das caldeiras de alta pressão. A presença de sílica, especialmente em caldeiras de alta pressão, também é crítica, pois, nessas condições, a sílica pode volatilizar e ser arrastada com o vapor, provocando incrustações nas pás de turbinas de geração de energia, causando desbalanceamento, danos mecânicos e degradação da qualidade do vapor.

Leia Mais