Remoção de nitrato por troca iônica: a resina ideal e princípios de funcionamento

A remoção de nitrato (NO3) presente na água utilizada para consumo humano além de necessária, é regulamentada pela portaria n° 888 do Ministério da Saúde, indicando que a concentração da substância deve ser mantida abaixo de 10 mg/L (em base N) de modo a evitar danos à saúde.

Comumente se encontram fontes de água subterrânea com teores de NO3 acima do permitido, e quando isto ocorre, a troca iônica é sempre uma das alternativas consideradas como rota tecnológica para a remoção de nitrato. Para esta aplicação, as resinas aniônicas são aplicadas no ciclo Cl, e após sua exaustão, são regeneradas com soluções de NaCl. As reações de troca iônica e regeneração são apresentadas abaixo. R representa a resina e seu grupo funcional sem fazer distinção quanto ao tipo de grupo funcional.

Dois tipos de resinas podem ser utilizados para remoção de nitrato, sendo elas as Aniônicas Fortemente Básicas de tipo I (SBA Tipo I) e as resinas seletivas, sendo estas referidas como resinas com melhor desempenho e eficiência na remoção da substância. Em geral, a escolha entre esses dois tipos de resinas é feita levando em consideração a química da água, em especial a presença de sulfato (SO42-).

Os fatores de separação das resinas SBA tipo I para os ânions Cl, NO3 e SO42- são apresentados na Tabela 1 (estes são valores médios e encontrados na literatura; os valores podem variar de acordo com o fabricante da resina e com a química da água). O fator de separação pode ser interpretado como a preferência da resina pelos diferentes ânions, tomando como base determinada forma iônica. Quanto maior o fator de separação, maior será a facilidade e o uso da capacidade da resina para remover o ânion de interesse.

Tabela 1 – Fatores de separação para Cl, NO3 e SO42- para uma resina SBA tipo I.

ÂnionFator de separação (αAB)
Cl1,0
NO33,2
SO42-9,1
Fonte: Howe et al. Princípios de Tratamento de Água, 2016.

A análise dos fatores de separação demonstra uma preferência de cerca de 2,84 vezes para uma resina SBA tipo I na troca do íon NO3 pelo SO42-. Desta forma, percebe-se que a concentração de SO42- na água é o principal fator limitante na escolha da resina ideal para remoção de nitrato.

Utilizando os valores do fator de separação apresentados e considerando uma resina SBA tipo I com uma capacidade total de troca iônica de 1,4 eq/L, podemos calcular a capacidade de troca para cada ânion em função da razão de concentrações do sulfato e nitrato presente na água. Os cálculos em forma gráfica são apresentados na Figura 1. Para estes cálculos assumiu-se concentração total na água sempre igual a 3 meq/L e que se atingisse o equilíbrio termodinâmico entre a resina e a água.

Figura 1 – Relação entre a capacidade de troca iônica para os íons NO3 e SO42- em função da razão [Sulfato]/[Nitrato] para uma resina SBA tipo I.



Fonte:
Os autores.


À medida que a concentração de sulfato aumenta, a capacidade disponível na resina para remoção de nitrato cai. O valor-limite encontrado frequentemente na literatura para uso de uma resina SBA tipo I para remoção de nitrato é para a razão [Sulfato/Nitrato] = 1 (demarcada pela linha vertical vermelha). Razões acima do valor-limite prejudicam a operação do equipamento e aumentam os custos de OPEX. Desta forma, para águas onde [Sulfato/Nitrato] ≥ 1, é recomendado a aplicação de uma resina seletiva para NO3.

Mas afinal, o que uma resina seletiva para remoção de nitrato possui de diferente?

A diferença entre esses dois tipos de resina costuma ser um ponto de dúvida comum, muito pelo fato de que se analisarmos as fichas técnicas para modelos de resina SBA tipo I e resinas seletivas para NO3 as propriedades relatadas são muito similares, e o grupo funcional (fator que faz com que as resinas seletivas sejam seletivas) relatados para ambos os tipos de resina é o quaternário de amônio. Este fato pode causar estranheza em primeira instância por induzir a pensarmos que o grupo funcional de ambas as resinas é o mesmo.

Para entender a diferença entre as resinas, primeiro precisamos compreender o que de fato é um composto quaternário de amônio (Figura 2). Um composto denominado de quaternário de amônio corresponde a uma amina com quatro ligações covalentes com grupos de carbono, os quais podem ser alifáticos ou aromáticos. A quarta ligação covalente (chamada de ligação covalente dativa, até alguns anos atrás) é feita apenas com o par de elétrons livre do nitrogênio (N), e este fator faz com que o N adquira uma carga positiva, tornando-o as espécies quaternárias de amônio um ótimo grupo funcional para troca de ânions.

Figura 2 – Representação genérica de um composto quaternário de amônio.

Fonte: Os autores.

Na Figura 2, os grupos R, R’, R’’ e R’’’ correspondem aos substituintes alifáticos ou aromáticos e podem ser iguais ou diferentes entre si. São estes substituintes que diferem as resinas SBA tipo I das resinas seletivas. Como exemplo, iremos considerar as resinas Trilite SAR10 (SBA tipo I) e a resina Trilite CLR-N (seletiva) para verificar a diferença entre os grupos funcionais.

A Figura 3 apresenta uma representação molecular 3D para o grupo funcional de ambas as resinas (Cinza: C, Azul: N, Branco: H). Os substituintes R para a resina SAR10 são grupos metil, com um carbono, enquanto para resina seletiva os substituintes são grupos etil, com dois carbonos.

Figura 3 – Grupos funcionais para as resinas Trilite SAR10 (SBA tipo I) e Trilite CLR-N (seletiva).

Fonte: Os autores.

A diferença entre a seletividade e preferência para os dois tipos de resina reside nas diferenças do grupo funcional, porém a gênesis da diferença de seletividade não é devido a basicidade do grupo funcional, mas sim por questões estéricas. Para que a reação de troca iônica ocorra é necessário que o ânion a ser removido (sulfato ou nitrato) chegue até o sítio ativo, e um fator determinante para isto é o diâmetro dos íons. O raio iônico e o raio hidratado para diferentes ânions são apresentados na Tabela 2.

Tabela 2 – Raio iônico e raio hidratado para alguns ânions em solução aquosa.

ÂnionRaio iônico (nm)Raio hidratado (nm)
F0,1240,263
Cl0,1800,319
NO30,1770,316
SO42-0,2420,382

Fonte: Marcus, Y. Ionic Radius in aqueous Solutions. Chem. Rev. 88, 1475-1498 (1988).

Como observado na Tabela 2, o raio hidratado do SO42- é maior comparado com o raio hidratado do NO3, sendo este fator responsável por dificultar o acesso do SO42- ao sítio ativo dos grupos funcionais de uma resina seletiva. Ao observarmos a Figura 3, os átomos de C e H dos substituintes etil fazem com que o átomo de N carregado positivamente seja espacialmente mais impedido que o átomo de N rodeado por grupos metil. Este fenômeno recebe o nome de impedimento estérico, sendo o responsável pela diferença de seletividade entre os tipos de resina e fator que favorece o uso das resinas seletivas em condições em que [Sulfato/Nitrato] ≥ 1.

A Liter possui a expertise necessária em tratamento de água para auxiliar você a optar pela resina ideal para a remoção de nitrato. Entre em contato com nossos especialistas e entenda como podemos ajudar os seus processos a serem ainda melhores!

Leia também: Desmineralização da água com resinas de troca iônica.

Compartilhe esse conteúdo:

Leia também

Problemas causados por fouling em tubos de quartzo de sistemas UV

Um dos maiores desafios operacionais enfrentados em sistemas ultravioletas é o fouling em tubos de quartzo, um fenômeno que reduz a eficiência do processo de desinfecção e gera custos adicionais de manutenção. É bom contextualizar a importância desse processo para o tratamento de água e efluentes, uma vez que os reatores ultravioletas (UV) têm conquistado espaço devido à sua alta eficácia na desinfecção contra uma ampla variedade de microrganismos, como bactérias, vírus, protozoários, algas e patógenos resistentes ao cloro, como Cryptosporidium, Giardia, Legionella e C. parvum. O que é o fouling em tubos de quartzo? O fouling é o acúmulo de materiais sobre a superfície externa dos tubos de quartzo, formando uma barreira que reduz a passagem da radiação ultravioleta. Isso compromete a irradiância da lâmpada e, consequentemente, a eficiência da desinfecção. Esse acúmulo pode ocorrer por diferentes mecanismos, de forma isolada ou combinada: 1. Fouling inorgânico Incrustações de carbonatos de cálcio e magnésio, sílica, ferro e manganês. 2. Fouling orgânico Deposição de matéria orgânica natural ou subprodutos de desinfecção. 3. Biofouling Crescimento de biofilmes microbiológicos em ambientes ricos em nutrientes. 4. Fouling particulado Acúmulo de sólidos suspensos em sistemas com pré-filtração deficiente. Veja alguns exemplos visuais de fouling em

Leia Mais

Reaproveitamento de água em torres de resfriamento

O reaproveitamento de água tem se tornado uma prática essencial para empresas que buscam sustentabilidade e eficiência operacional. Em sistemas de torres de resfriamento, onde há grande consumo de água, a osmose reversa (OR) se destaca como uma tecnologia estratégica para reduzir custos e otimizar recursos hídricos. Ao aplicar a OR para o reaproveitamento de água em torres de resfriamento, é possível alcançar benefícios diretos como: 1. Redução da necessidade de água fresca Menos captação de recursos naturais e menores despesas com abastecimento. 2. Controle rigoroso dos sólidos dissolvidos e contaminantes Isto prolonga a vida útil das torres e evita problemas de incrustação e corrosão. 3. Melhoria na eficiência das torres de resfriamento Com água de maior qualidade, o desempenho térmico é otimizado, reduzindo custos de manutenção. Membranas de alto desempenho para condições severas O sucesso do reaproveitamento de água depende do uso de membranas adequadas. Algumas opções avançadas e disponíveis na Liter são: – MaxRO: projetada para oferecer alta rejeição de sais e eficiência em sistemas robustos; – LG BW 400 R G2: ideal para garantir excelente desempenho em diferentes qualidades de água; – LG BW 400 AFR G2: com maior resistência a incrustações e incrustantes, prolongando o tempo

Leia Mais