Dimensionamento das válvulas Runlucky para uso em projetos

As válvulas são, de modo geral, caracterizadas de acordo com sua constante de fluxo, chamada de KV (sistema de unidades internacional) e CV (sistema de unidades americano). Neste post, vamos esclarecer como utilizar os valores de KV das válvulas Runlucky nos projetos de filtros e sistemas com resina de troca iônica, melhorando a precisão de cálculos de perda de carga e vazão.

Antes disso, é importante relembrar a função da constante de fluxo, que é utilizada para o dimensionamento das válvulas. Seu valor é utilizado para selecionar um dispositivo que permita o fluxo desejado, para que ocorra uma queda de pressão fixa.

A teoria sobre válvulas é extensa, e adaptações nas equações principais são empregadas para casos específicos com fluidos específicos. Para o leitor interessado em se aprofundar, sugere-se uma leitura do livro-texto da Emerson e das normas europeias que tratam sobre controle e automação.

Teoria básica sobre válvulas

A Figura 1 mostra o diagrama representativo de uma válvula qualquer instalada em uma tubulação, no qual mede-se a pressão de entrada e saída:

Figura 1 – Diagrama representativo de uma válvula genérica instalada em uma rede hidráulica.

Considerando um fluido incompressível em situação isenta de cavitação, a vazão Q pode ser calculada pela Equação 1.

(1)
Q é a vazão (m3/h), ΔP é a perda de carga na válvula (bar), ρ é a densidade (o subscrito f se refere ao fluido escoando), KV é a constante de fluxo característica da válvula e f(l) a função de abertura.

A função de abertura correlaciona como o fluxo varia em diferentes aberturas da válvula. Por exemplo, para uma válvula globo, ao conhecermos sua função de abertura podemos calcular a vazão com a válvula com 10%, 20%, 30% (entre outros valores) de abertura.

A função de abertura está associada à construção da válvula, principalmente com o plug de fechamento. Diferentes geometrias fornecem diferentes funções de abertura.

A perda de carga na válvula é calculada pela diferença entre P1 e P2.

Aplicação às válvulas Runlucky

Para ilustrar o uso dos dados de KV disponíveis nos manuais das válvulas, considere a situação de um abrandador dimensionado para uma vazão de 3,0 m3/h. Pode-se optar pelo uso das válvulas F63C3 (vazão nominal 4,0 m3/h) ou pelo modelo F130A3 (vazão nominal 6,0 m3/h).

As Figuras 2 e 3 mostram a curva de fluxo característica e o respectivo KV para os dois modelos de válvulas citados:

Figura 2 – Curva de fluxo para etapa operacional da válvula de abrandador modelo F63C3.
Figura 3 – Curva de fluxo para etapa operacional da válvula de abrandador modelo F130A3.

Podemos calcular a perda de carga necessária em cada modelo de válvula resolvendo a Equação 1 para ΔP, assim:

(2)

Como o fluido a ser abrandado é água, o termo de densidades assume valor igual a 1. Estamos interessados em saber a vazão na válvula quando sua abertura estiver completa, assim, a função de abertura também assume valor igual a 1. Assim, calculando a perda de carga para uma vazão de 3,0 m3/h, temos:

  • F63C3: ΔP = 0,92 bar
  • F130A3: ΔP = 0,39 bar

Desta forma, observamos que, se a maior perda de carga não for um problema, podemos optar pela menor válvula.

Imagine que, em vez de um abrandador, o sistema que seria montado fosse um desmineralizador de leito separado, com filtro de carvão como pré-tratamento e leito de resina mista como pós-tratamento, ambos para a mesma vazão de 3,0 m3/h.

Neste segundo caso teríamos quatro válvulas em série e, dependendo do restante do sistema hidráulico, a perda de carga poderia ser um fator decisivo. Adotar o uso de válvulas F130A3 nas colunas de resina catiônica e aniônica seria um meio de reduzir a perda de carga e diminuir a potência necessária na bomba de alimentação.

Aplicação para filtros: Vazão de retrolavagem

No projeto de filtros, as informações de KV são muito úteis para o dimensionamento das condições de retrolavagem. A Figura 4 mostra um desenho representativo da instalação de um filtro, identificando as principais informações do processo.

Figura 4 – Diagrama representativo da instalação de um filtro, identificando as principais variáveis do processo.

Com o KV da etapa de retrolavagem pode-se calcular a perda de carga necessária para obter a vazão de projeto para esta etapa. Como recomenda-se que o dreno seja direcionado a uma calha coletora, a qual efetivamente direciona o efluente gerado para o ponto de disposição final, a pressão no ponto 3 é igual a zero (tubulação descarregando sob pressão atmosférica). Assim, a própria pressão de entrada na válvula ditará a vazão na etapa de retrolavagem.

Por exemplo, considere um filtro que necessita de 12,0 m3/h de vazão de retrolavagem, e que este filtro tenha sido montado utilizando uma válvula F134A1 (vazão nominal de 8 m3/h). O valor de KV para etapa de retrolavagem nesta válvula é de 8,60, assim a perda de carga calculada é de:

  • F134A1: ΔP = 1,95 bar @ 12,0 m3/h.

Adicionando os valores de perda de carga na linha hidráulica, facilmente dimensiona-se a bomba necessária para etapa de retrolavagem.

Leia também: Problemas e Soluções para Válvulas de Abrandador da Runlucky

Compartilhe esse conteúdo:

Leia também

Como escolher entre resinas aniônicas fracas e fortes?

As resinas aniônicas desempenham um papel fundamental nos sistemas de troca iônica destinados à remoção de ânions como cloretos, sulfatos, nitratos e sílica. Utilizadas em indústrias, hospitais, laboratórios e diversos processos críticos, elas garantem a qualidade da água desmineralizada, atendendo padrões rigorosos de pureza. Na prática, existem dois grandes grupos: resinas aniônicas fracas (WBA) e resinas aniônicas fortes (SBA). Apesar de desempenharem funções complementares, cada uma delas possui características específicas que influenciam diretamente a eficiência do sistema e o custo operacional. Neste artigo, você entenderá essas diferenças e descobrirá como escolher a resina ideal para cada aplicação, além de ver como a Liter apoia seus projetos com engenharia especializada e soluções completas. O que são resinas aniônicas e como funcionam? As resinas aniônicas são materiais poliméricos compostos por grupos funcionais com carga positiva que atraem e trocam íons negativos presentes na água. Durante a operação, esses grupos capturam ânions indesejados, retendo-os em sua matriz para liberar outro íon no lugar, geralmente hidroxila (OH⁻). Essa troca é essencial para alcançar níveis elevados de desmineralização, principalmente quando combinada com resinas catiônicas em sistemas de duas etapas ou de ciclo completo. 1. Resinas Aniônicas Fracas (WBA) As resinas aniônicas fracas possuem grupos funcionais

Leia Mais

Desinfecção avançada com ultravioleta e cloração: combinar tecnologias eleva a segurança da água

Usar ultravioleta e cloração de forma combinada cria uma barreira múltipla capaz de ampliar o espectro de inativação de microrganismos, reduzir riscos operacionais e otimizar custos. Isso porque a desinfecção representa a última “trava” de segurança no tratamento de água e onde falhas custam caro. A seguir, você entende como funciona, quando aplicar e quais cuidados de projeto e operação adotamos na Liter. Ultravioleta e cloração: entregas e limites de cada tecnologia A radiação ultravioleta (UV) atua danificando o material genético (DNA/RNA) por fotólise, impedindo a replicação microbiana. – Pontos fortes: ação imediata; não gera subprodutos químicos; eficiente contra cistos e oocistos (ex.: Giardia, Cryptosporidium). – Pontos de atenção: não deixa residual e depende de dose (mJ/cm²) e UVT da água; subdosagem pode permitir reativação. Já a cloração atua com substâncias como HOCl/OCl⁻ que oxidam estruturas celulares e enzimas; deixa residual que protege reservatórios e redes contra recontaminação. – Pontos fortes: custo competitivo; controle de biofilme/alga; essencial para distribuição e reúso com armazenamento. – Pontos de atenção: alguns organismos são mais resistentes; pode formar subprodutos (ex.: THMs/HAA5) quando mal dosado ou em água com altos precursores orgânicos; sensível a pH (HOCl é mais eficaz em pH levemente ácido/neutro). Por que

Leia Mais