Como remover o fluoreto da água?

É comum encontrar substâncias como fluoreto nas águas provenientes do subsolo, porém, é fundamental observar se seus níveis são aceitáveis, a fim de evitar possíveis transtornos à saúde. Por isso, mostraremos a seguir como calcular seu teor e remover o fluoreto da água nas circunstâncias recomendáveis.

Os poços tubulares podem ser adotados como uma alternativa para suprir a demanda de água em residências, pequenas comunidades e processos industriais. Geralmente, a qualidade da água subterrânea é superior ao das águas superficiais em termos de contaminantes físicos, como partículas suspensas, cor e turbidez, por exemplo, fazendo com que seu tratamento antes do uso seja facilitado.

Tendo em vista que a composição química da água depende de caraterísticas geológicas dos poços, a detecção de fluoreto (F)em águas subterrâneas tem sido reportada com frequência em aquíferos brasileiros, sendo associado ao processo geológico de dissolução de minerais. O F é um íon essencial para a prevenção de cáries, sendo dosado em estações de tratamento de água antes da distribuição. Contudo, quando estiver acima de seu valor máximo permitido (VMP) pode causar problemas severos à saúde.

Problemas causados pelo fluoreto da água

Segundo um artigo apresentado no Journal of Environmental Management pelo autor Mohapatra, o consumo crônico de água com teores de F abaixo de 0,5 mg/L pode ocasionar aumento no aparecimento de cáries dentais. Já teores entre 0,5 e 1,5 mg/L são considerados a faixa ideal de concentração para prevenir cáries, e entre a faixa entre 1,5 e 4,0 mg/L problemas de fluorose dental foram observados. Entre 4,0 e 10,0 mg/L, além da fluorose dental, foram reportadas ocorrências de fluorose óssea, sendo que acima de 10,0 mg/L os problemas evoluem para casos de fluorose incapacitante.

Desta forma, se a água do poço apresentar uma concentração superior a 1,5 mg/L de F, torna-se necessária sua remoção. O processo de remover o fluoreto da água pode ser feito por resinas de troca iônica, empregando resinas aniônicas tipo I ou tipo II em sua forma Cl. Assim, após a exaustão as resinas podem ser regeneradas facilmente com cloreto de sódio (NaCl) de forma a restaurar a capacidade de remoção do equipamento.

Sistema para remover o fluoreto da água

Para que seja possível um dimensionamento seguro e eficaz de um sistema de remoção de fluoreto por meio da troca iônica, a Liter recomenda que os parâmetros apresentados na Tabela 1 sejam analisados na água antes do projeto do sistema.

Tabela 1 – Ânions que devem ser analisados para um bom dimensionamento de sistemas de remoção de fluoreto por troca iônica.

É de fundamental importância o mapeamento dos diferentes ânions presentes na água além do F, uma vez que a seletividade das resinas aniônicas para o fluoreto é baixa. Em geral, apenas de 1% a 15% da capacidade total da resina é utilizada para remoção do fluoreto.

Com o conhecimento da composição da água, o teor do fluoreto em termos percentuais (comparado com os outros ânions) pode ser utilizado para determinar a capacidade de troca iônica das resinas aniônicas tipo I e tipo II, empregando o gráfico apresentado na Figura 1. O cálculo do teor percentual de fluoreto deve ser feito considerando todas as concentrações em unidades de CaCO3/L.

Figura 1 – Capacidade operacional de troca iônica para as resinas SAR20 e SAR10 aplicadas à remoção do fluoreto.

Nota-se da Figura 1 que, mesmo para condições em que apenas o fluoreto esteja presente na água (100% de F), a capacidade operacional não ultrapassa 8g CaCO3/L de resina (cerca de 12% da capacidade total de uma resina tipo II). Com o valor da capacidade operacional de troca iônica, o volume de resina pode ser calculado utilizando a Equação 1.

Equação 1.

Onde: VR é o volume de resina (L); CF- é a concentração de fluoreto na água (g CaCO3/L); Δt é o tempo operacional desejado (h); Q é a vazão volumétrica que se pretende tratar (L/h); qopr é a capacidade operacional de troca iônica determinada na Figura 1 (g CaCO3/L), e FS o fator de segurança do dimensionamento.

A velocidade específica de operação do sistema deverá ficar entre 10 e 40 BV/h. A retrolavagem deverá garantir no mínimo 50% de expansão para a resina; para a regeneração da resina, a dosagem de NaCl deverá ficar entre 50 e 250 g/L de resina, com concentração de aplicação em 10% e tempo de duração entre 20 e 40 minutos.

A remoção do excesso de salmoura deverá ser feita durante a lavagem lenta, com duração de 20 a 40 minutos, com velocidades específicas de operação entre 2 e 6 BV/h. A lavagem rápida deverá ser conduzida sob velocidade específica de 10 – 40 BV/h e duração entre 5 e 20 minutos.

Caso a água do seu poço apresente tais problemas, consulte a Liter para que possamos auxiliá-lo na melhor solução para remover o fluoreto da água e reduzir os riscos à saúde de todos que a usufruirão.

Leia também: Como calcular a dosagem de luz ultravioleta para desinfecção de água?

Compartilhe esse conteúdo:

Leia também

O que fazer quando a limpeza química não recupera a eficiência do sistema?

A limpeza química é um dos processos mais importantes para restaurar a eficiência de sistemas de osmose reversa. Realizada por meio do CIP (Clean-In-Place), ela tem como objetivo remover incrustações, biofilmes e depósitos orgânicos acumulados nas membranas. Porém, nem sempre o resultado esperado é alcançado. Quando o desempenho não retorna ao normal, é sinal de que algo mais sério pode estar acontecendo. Quando a limpeza química não resolve os potenciais problemas, as principais causas podem ser: – Decisão tardia: Quando os dados operacionais da planta não são monitorados e normalizados adequadamente, a limpeza química é feita apenas após os danos se tornarem irreversíveis. Como consequência, a eficiência operacional se deteriora de forma progressiva a cada ciclo. – Biofilmes resistentes: Biofilmes bem aderidos, compostos por microrganismos e material orgânico, podem impedir a remoção total das sujidades. Em casos assim, é necessário alternar agentes químicos ou realizar uma sequência de limpezas específicas para romper essa barreira protetora. – Danos físicos ou químicos nas membranas: Se as membranas forem expostas a produtos inadequados, pressões incorretas ou condições operacionais fora do padrão, podem ocorrer danos estruturais irreversíveis. Nesse cenário, a limpeza química não é suficiente para recuperar a performance do sistema. – Procedimento de

Leia Mais

Conservação de resinas de troca iônica na época de entressafra

Nas usinas de açúcar e etanol, a conservação de resinas de troca iônica durante a entressafra é um fator essencial para garantir o desempenho dos sistemas de desmineralização de água na próxima safra. Durante o período de inatividade, sem os devidos cuidados, as resinas podem sofrer degradação, contaminação e perda de capacidade, impactando diretamente a eficiência operacional e os custos da usina. Problemas comuns na conservação de resinas neste período Quando as resinas de troca iônica ficam paradas por longos períodos sem a conservação adequada, podem ocorrer diversos problemas, como: – Crescimento microbiológico: a presença de umidade e nutrientes na resina favorece o desenvolvimento de bactérias, fungos e biofilme, comprometendo sua capacidade de troca iônica. – Ressecamento e fissuras: a exposição ao ar pode levar ao ressecamento das esferas de resina, resultando em microfissuras que reduzem sua eficiência e durabilidade. – Contaminação com ferro e sílica: impurezas presentes na água ou em equipamentos podem impregnar as resinas, afetando seu desempenho. – Perda de capacidade de troca iônica: a falta de um método adequado de conservação pode acelerar o desgaste das resinas, aumentando a necessidade de reposição e os custos operacionais. Métodos recomendados para conservação de resinas de troca iônica A

Leia Mais