Como melhorar o custo de operação de um abrandador de água

custo de operação de um abrandador de água

O custo de operação de um abrandador de água depende principalmente do custo do sal e da água usados para a regeneração. Estes são os principais parâmetros que devem ser observados quando o objetivo é economizar recursos nesta operação.

Uma forma prática, e até um tanto óbvia, de minimizar este custo é garantir que não sejam utilizados mais do que 250 gramas de sal por litro de resina e que a vazão de regeneração adequada seja empregada. Doses de sal maiores que 250g/l não aumentam significativamente a capacidade da resina.

Já o fluxo excessivo de água não apenas desperdiça água, mas também pode reduzir a eficiência de regeneração. Outra forma de minimizar os custos operacionais é utilizar dosagens que economizem sal.

    

O impacto de doses econômicas de sal no custo de operação de um abrandador de água

Trabalhar com doses econômicas de sal ajuda reduzir o custo de operação de um abrandador de água. Elas se baseiam no fato de que a capacidade de abrandamento não diminui proporcionalmente com a redução da quantidade de sal utilizada para a regeneração. Acompanhe o exemplo:

Capacidade (mg/l de resina) Dosagem de Sal (g/l de resina) Eficiência de Regeneração (mg/g de sal)
68.640 250 274,56
57.200 165 346,67
50.336 125 402,69
41.641 70 594,87

Uma redução de 50% no uso de sal reduz apenas a capacidade de abrandamento em 27%. Além disso, vale ressaltar que doses mais baixas de sal requerem regenerações mais frequentes.

    

Análise de custo do abrandador

Para ponderar se a regeneração mais frequente, com dosagens mais baixas de sal, é economicamente atrativa, é preciso avaliar os seguintes fatores:

– Necessidades de água abrandada;
– Custo da água;
– Disponibilidade de água;
– Custo do sal;
– Dureza da água bruta;
– Dureza desejada da água tratada;
– Design do abrandador;
– Entre outros.

Uma desvantagem de usar menos de 250 gramas de sal por litro de resina é que pode ocorrer vazamento de dureza, caso o abrandador não seja regenerado adequadamente. Por esse motivo, uma dosagem de sal de 165g/l é frequentemente usada. Isso reduz o potencial de vazamento ao longo do uso de 125 g/l, ao mesmo tempo em que proporciona uma economia significativa de sal.

No entanto, se a dureza de entrada for muito alta e a velocidade linear estiver próxima dos limites, as dosagens econômicas de sal podem não ser ideais devido ao vazamento de dureza durante o abrandamento. Além disso, as dosagens econômicas de sal não são desejáveis se os abrandadores forem dimensionados de modo que haja necessidade de mais do que uma regeneração por dia.

Apesar dessas limitações, a regeneração econômica pode ser usada com eficácia para reduzir os custos operacionais do abrandador em muitas instalações. Eles podem ser especialmente benéficos para abrandadores grandes, pois o aumento da frequência de regeneração pode ajudar a reduzir a compactação e a formação de caminhos preferenciais.


Para aplicar os valores da sua operação, disponibilizamos uma planilha de simulação de custos. Clique aqui para fazer o download.


A Liter possui uma linha completa de resinas de troca iônica para atender todas as demandas de sua indústria. Conheça estes e outros produtos entrando em contato conosco.

Leia também: Como dimensionar um abrandador de água corretamente

Compartilhe esse conteúdo:

Leia também

O que é a UVT da água e como ela impacta seu sistema de desinfecção por luz UV

Um sistema de luz ultravioleta inativa os microrganismos presentes na água causando danos ao seu DNA, impedindo assim sua reprodução e proliferação. Contudo, para que a tecnologia seja eficaz o microrganismo deve ser exposto a dosagem de radiação adequada, o que irá propiciar o grau de remoção desejado. Alguns destes conceitos foram abordados no texto Como calcular a dosagem de luz ultravioleta para desinfecção de água? Todos os fatores citados acima são afetados pela transmitância da água, chamada de UVT. A UVT da água pode ser entendida como a quantidade de luz que é transmitida por uma amostra, de caminho óptico fixo, em um comprimento de onda fixo. A Figura 1 ilustra este conceito de UVT da água, onde inicialmente um feixe de luz com intensidade I0 é emitido através de uma cubeta de comprimento l, contendo uma amostra com determinada concentração c, a qual é capaz de atenuar o feixe de luz a uma intensidade final I. Figura 1 – Atenuação de um feixe de luz emitido em um comprimento de onda específico (λ) por uma amostra líquida com concentração c. A parcela de luz absorvida pela amostra pode ser calculada pela Equação 1, sendo que sua relação com

Leia Mais

A influência da turbidez na desinfecção com sistemas de ultravioleta

Os sistemas de ultravioleta são uma forma eficaz de fazer a desinfecção da água e efluentes, promovendo rápida inativação dos microrganismos em um curto tempo de contato. Apesar da elevada eficiência, alguns cuidados devem ser tomados durante o projeto de sistemas que irão utilizar reatores ultravioleta na desinfecção, devendo ser mantidos mesmo após a instalação, partida e operação do sistema. Dentre os contaminantes que podem afetar o desempenho de um sistema de desinfecção por luz UV, a turbidez merece destaque. Para o uso de sistemas de ultravioleta, recomenda-se que a turbidez da água ou efluente de entrada seja menor que 1 NTU, evitando a presença de partículas suspensas no interior do reator. A presença de partículas suspensas diminui a eficiência de inativação. Na Figura 1, dois mecanismos distintos de proteção aos microrganismos estão representados. Figura 1 – Mecanismo de interferência e sombreamento causado pela presença de partículas suspensas na água ou efluente. Fonte: adaptado de Crittenden et al., 2012. O desvio ou absorção parcial da luz UV pelas partículas suspensas diminui o tempo de exposição dos microrganismos, fazendo com que a dosagem efetiva do reator seja menor, ocasionando a perda de eficiência. Por se tratar de um processo complexo, é

Leia Mais