Como melhorar o custo de operação de um abrandador de água

custo de operação de um abrandador de água

O custo de operação de um abrandador de água depende principalmente do custo do sal e da água usados para a regeneração. Estes são os principais parâmetros que devem ser observados quando o objetivo é economizar recursos nesta operação.

Uma forma prática, e até um tanto óbvia, de minimizar este custo é garantir que não sejam utilizados mais do que 250 gramas de sal por litro de resina e que a vazão de regeneração adequada seja empregada. Doses de sal maiores que 250g/l não aumentam significativamente a capacidade da resina.

Já o fluxo excessivo de água não apenas desperdiça água, mas também pode reduzir a eficiência de regeneração. Outra forma de minimizar os custos operacionais é utilizar dosagens que economizem sal.

    

O impacto de doses econômicas de sal no custo de operação de um abrandador de água

Trabalhar com doses econômicas de sal ajuda reduzir o custo de operação de um abrandador de água. Elas se baseiam no fato de que a capacidade de abrandamento não diminui proporcionalmente com a redução da quantidade de sal utilizada para a regeneração. Acompanhe o exemplo:

Capacidade (mg/l de resina) Dosagem de Sal (g/l de resina) Eficiência de Regeneração (mg/g de sal)
68.640 250 274,56
57.200 165 346,67
50.336 125 402,69
41.641 70 594,87

Uma redução de 50% no uso de sal reduz apenas a capacidade de abrandamento em 27%. Além disso, vale ressaltar que doses mais baixas de sal requerem regenerações mais frequentes.

    

Análise de custo do abrandador

Para ponderar se a regeneração mais frequente, com dosagens mais baixas de sal, é economicamente atrativa, é preciso avaliar os seguintes fatores:

– Necessidades de água abrandada;
– Custo da água;
– Disponibilidade de água;
– Custo do sal;
– Dureza da água bruta;
– Dureza desejada da água tratada;
– Design do abrandador;
– Entre outros.

Uma desvantagem de usar menos de 250 gramas de sal por litro de resina é que pode ocorrer vazamento de dureza, caso o abrandador não seja regenerado adequadamente. Por esse motivo, uma dosagem de sal de 165g/l é frequentemente usada. Isso reduz o potencial de vazamento ao longo do uso de 125 g/l, ao mesmo tempo em que proporciona uma economia significativa de sal.

No entanto, se a dureza de entrada for muito alta e a velocidade linear estiver próxima dos limites, as dosagens econômicas de sal podem não ser ideais devido ao vazamento de dureza durante o abrandamento. Além disso, as dosagens econômicas de sal não são desejáveis se os abrandadores forem dimensionados de modo que haja necessidade de mais do que uma regeneração por dia.

Apesar dessas limitações, a regeneração econômica pode ser usada com eficácia para reduzir os custos operacionais do abrandador em muitas instalações. Eles podem ser especialmente benéficos para abrandadores grandes, pois o aumento da frequência de regeneração pode ajudar a reduzir a compactação e a formação de caminhos preferenciais.


Para aplicar os valores da sua operação, disponibilizamos uma planilha de simulação de custos. Clique aqui para fazer o download.


A Liter possui uma linha completa de resinas de troca iônica para atender todas as demandas de sua indústria. Conheça estes e outros produtos entrando em contato conosco.

Leia também: Como dimensionar um abrandador de água corretamente

Compartilhe esse conteúdo:

Leia também

Desinfecção avançada com ultravioleta e cloração: combinar tecnologias eleva a segurança da água

Usar ultravioleta e cloração de forma combinada cria uma barreira múltipla capaz de ampliar o espectro de inativação de microrganismos, reduzir riscos operacionais e otimizar custos. Isso porque a desinfecção representa a última “trava” de segurança no tratamento de água e onde falhas custam caro. A seguir, você entende como funciona, quando aplicar e quais cuidados de projeto e operação adotamos na Liter. Ultravioleta e cloração: entregas e limites de cada tecnologia A radiação ultravioleta (UV) atua danificando o material genético (DNA/RNA) por fotólise, impedindo a replicação microbiana. – Pontos fortes: ação imediata; não gera subprodutos químicos; eficiente contra cistos e oocistos (ex.: Giardia, Cryptosporidium). – Pontos de atenção: não deixa residual e depende de dose (mJ/cm²) e UVT da água; subdosagem pode permitir reativação. Já a cloração atua com substâncias como HOCl/OCl⁻ que oxidam estruturas celulares e enzimas; deixa residual que protege reservatórios e redes contra recontaminação. – Pontos fortes: custo competitivo; controle de biofilme/alga; essencial para distribuição e reúso com armazenamento. – Pontos de atenção: alguns organismos são mais resistentes; pode formar subprodutos (ex.: THMs/HAA5) quando mal dosado ou em água com altos precursores orgânicos; sensível a pH (HOCl é mais eficaz em pH levemente ácido/neutro). Por que

Leia Mais

Prevenção de biofouling em osmose reversa através de sistemas ultravioleta

A prevenção de biofouling é um desafio central para manter a alta performance e a vida útil das membranas de osmose reversa. Esse fenômeno, caracterizado pela formação de biofilmes microbianos, afeta diretamente a eficiência do processo, aumenta a perda de carga, reduz a vazão de permeado e eleva os custos com limpezas frequentes e trocas antecipadas de membranas. Nesse contexto, os sistemas ultravioletas (UV) surgem como uma solução tecnológica eficaz e sustentável, especialmente quando aplicados como etapa de pré-tratamento. Sua ação germicida interrompe o ciclo de colonização de microrganismos, contribuindo para operações mais estáveis e econômicas. O que é o biofouling e por que preveni-lo? O biofouling ocorre quando bactérias, algas, vírus ou protozoários aderem à superfície da membrana, formando uma camada de substâncias poliméricas extracelulares (EPS). Essa camada cria uma barreira física que prejudica a filtração e exige maior pressão para manter a produção de permeado, impactando diretamente o consumo energético e os custos operacionais. Como os sistemas UV atuam na prevenção de biofouling A radiação ultravioleta, especialmente no comprimento de onda de 254 nm, provoca o rompimento das ligações entre nucleotídeos no DNA dos microrganismos, resultando em dimerização de timinas. Esse dano genético impede a reprodução, levando à

Leia Mais