Como calcular o ciclo de um abrandador de água

como calcular o ciclo de um abrandador de água

Saber calcular o ciclo de um abrandador de água é importante para dimensionar, configurar ou solucionar problemas relacionados a este sistema. Abrandadores são sistemas de troca iônica projetados para remover íons de cálcio e magnésio, responsáveis pelas incrustações em caldeiras, torres de resfriamento e em sistemas de osmose reversa, o que os torna essenciais em processos eficientes de filtragem e purificação de água.

A quantidade de dureza que um abrandador pode remover entre as regenerações é conhecida como o ciclo do abrandador e pode ser expresso em unidades volumétricas de água. Neste post iremos explicar como calcular o ciclo de um abrandador para tornar o sistema mais eficaz.

Leia também: Como dimensionar um abrandador de água corretamente

    

Passo a passo para calcular o ciclo de um abrandador de água

Em primeiro lugar é necessário calcular a capacidade do abrandador. Para isso, é preciso saber:

  • A dureza da água bruta em ppm;
  • O volume de resina em litros (L);
  • A dosagem de sal em gramas (g) / litro (L) de resina.

A dosagem de sal durante a regeneração determina a capacidade de troca da resina. Normalmente, uma dosagem de sal de 250g/L de resina é usada para fornecer uma capacidade de troca de 68.640mg de CaCO3/L de resina. Doses mais baixas de sal reduzem a capacidade, mas permitem um uso mais econômico do sal, que é a base para a dosagem de economia de sal.

Em uma situação hipotética, em que a água possua dureza de 120ppm de CaCO3 e o abrandador possua 175L de resina, que é regenerada utilizando-se 250g de sal por litro de resina, temos:

Cálculo da capacidade do abrandador em miligramas (mg):

Cálculo da capacidade do abrandador em miligramas (mg)
    

Calcule o ciclo do abrandador em m³

Calcule o ciclo do abrandador em m³
    

Adotando-se um fator de segurança de 10%, recomenda-se operar as regenerações deste equipamento a cada 90m³, entendendo-se que:

CTab = Capacidade total do abrandador (mg)

V = Volume de resina (L)

CT = Capacidade total da resina (ppm de CaCO3)

C = Ciclo do abrandador (L; m³)

DT = Dureza total (ppm de CaCO3)

A Liter possui uma linha completa de resinas de troca iônica para atender todas as demandas de sua indústria. Para conhecer estes e outros produtos entre em contato conosco.

Compartilhe esse conteúdo:

Leia também

Conservação de resinas de troca iônica na época de entressafra

Nas usinas de açúcar e etanol, a conservação de resinas de troca iônica durante a entressafra é um fator essencial para garantir o desempenho dos sistemas de desmineralização de água na próxima safra. Durante o período de inatividade, sem os devidos cuidados, as resinas podem sofrer degradação, contaminação e perda de capacidade, impactando diretamente a eficiência operacional e os custos da usina. Problemas comuns na conservação de resinas neste período Quando as resinas de troca iônica ficam paradas por longos períodos sem a conservação adequada, podem ocorrer diversos problemas, como: – Crescimento microbiológico: a presença de umidade e nutrientes na resina favorece o desenvolvimento de bactérias, fungos e biofilme, comprometendo sua capacidade de troca iônica. – Ressecamento e fissuras: a exposição ao ar pode levar ao ressecamento das esferas de resina, resultando em microfissuras que reduzem sua eficiência e durabilidade. – Contaminação com ferro e sílica: impurezas presentes na água ou em equipamentos podem impregnar as resinas, afetando seu desempenho. – Perda de capacidade de troca iônica: a falta de um método adequado de conservação pode acelerar o desgaste das resinas, aumentando a necessidade de reposição e os custos operacionais. Métodos recomendados para conservação de resinas de troca iônica A

Leia Mais

Normalização dos dados de osmose reversa

A normalização dos dados de osmose reversa (OR) é um processo essencial na análise e no monitoramento do desempenho de sistemas de membranas. Esse processo permite avaliar o estado real das membranas e identificar tendências de deterioração ou incrustação, eliminando influências externas que podem mascarar a interpretação dos resultados. Além disso, consiste em ajustar os dados operacionais brutos do sistema de osmose reversa para uma condição de referência, levando em consideração variáveis que afetam diretamente o desempenho do sistema, como temperatura da água de alimentação, pressão de operação, vazão e salinidade. A partir desses ajustes, os parâmetros fundamentais do sistema (como fluxo permeado, rejeição de sais e diferencial de pressão) são convertidos para valores que representam uma condição padronizada, permitindo comparações consistentes ao longo do tempo. O que a normalização dos dados de osmose reversa visa resolver? Os sistemas de osmose reversa são dinâmicos e estão sujeitos a variações de operação e qualidade da água de alimentação. Sem a normalização dos dados de osmose reversa, seria difícil interpretar corretamente o desempenho do sistema, pois mudanças nas condições operacionais podem influenciar os dados sem que haja, de fato, um problema no sistema. A normalização visa solucionar principalmente: 1. Influência da temperatura

Leia Mais