Como calcular o ciclo de um abrandador de água

como calcular o ciclo de um abrandador de água

Saber calcular o ciclo de um abrandador de água é importante para dimensionar, configurar ou solucionar problemas relacionados a este sistema. Abrandadores são sistemas de troca iônica projetados para remover íons de cálcio e magnésio, responsáveis pelas incrustações em caldeiras, torres de resfriamento e em sistemas de osmose reversa, o que os torna essenciais em processos eficientes de filtragem e purificação de água.

A quantidade de dureza que um abrandador pode remover entre as regenerações é conhecida como o ciclo do abrandador e pode ser expresso em unidades volumétricas de água. Neste post iremos explicar como calcular o ciclo de um abrandador para tornar o sistema mais eficaz.

Leia também: Como dimensionar um abrandador de água corretamente

    

Passo a passo para calcular o ciclo de um abrandador de água

Em primeiro lugar é necessário calcular a capacidade do abrandador. Para isso, é preciso saber:

  • A dureza da água bruta em ppm;
  • O volume de resina em litros (L);
  • A dosagem de sal em gramas (g) / litro (L) de resina.

A dosagem de sal durante a regeneração determina a capacidade de troca da resina. Normalmente, uma dosagem de sal de 250g/L de resina é usada para fornecer uma capacidade de troca de 68.640mg de CaCO3/L de resina. Doses mais baixas de sal reduzem a capacidade, mas permitem um uso mais econômico do sal, que é a base para a dosagem de economia de sal.

Em uma situação hipotética, em que a água possua dureza de 120ppm de CaCO3 e o abrandador possua 175L de resina, que é regenerada utilizando-se 250g de sal por litro de resina, temos:

Cálculo da capacidade do abrandador em miligramas (mg):

Cálculo da capacidade do abrandador em miligramas (mg)
    

Calcule o ciclo do abrandador em m³

Calcule o ciclo do abrandador em m³
    

Adotando-se um fator de segurança de 10%, recomenda-se operar as regenerações deste equipamento a cada 90m³, entendendo-se que:

CTab = Capacidade total do abrandador (mg)

V = Volume de resina (L)

CT = Capacidade total da resina (ppm de CaCO3)

C = Ciclo do abrandador (L; m³)

DT = Dureza total (ppm de CaCO3)

A Liter possui uma linha completa de resinas de troca iônica para atender todas as demandas de sua indústria. Para conhecer estes e outros produtos entre em contato conosco.

Compartilhe esse conteúdo:

Leia também

Problemas causados por fouling em tubos de quartzo de sistemas UV

Um dos maiores desafios operacionais enfrentados em sistemas ultravioletas é o fouling em tubos de quartzo, um fenômeno que reduz a eficiência do processo de desinfecção e gera custos adicionais de manutenção. É bom contextualizar a importância desse processo para o tratamento de água e efluentes, uma vez que os reatores ultravioletas (UV) têm conquistado espaço devido à sua alta eficácia na desinfecção contra uma ampla variedade de microrganismos, como bactérias, vírus, protozoários, algas e patógenos resistentes ao cloro, como Cryptosporidium, Giardia, Legionella e C. parvum. O que é o fouling em tubos de quartzo? O fouling é o acúmulo de materiais sobre a superfície externa dos tubos de quartzo, formando uma barreira que reduz a passagem da radiação ultravioleta. Isso compromete a irradiância da lâmpada e, consequentemente, a eficiência da desinfecção. Esse acúmulo pode ocorrer por diferentes mecanismos, de forma isolada ou combinada: 1. Fouling inorgânico Incrustações de carbonatos de cálcio e magnésio, sílica, ferro e manganês. 2. Fouling orgânico Deposição de matéria orgânica natural ou subprodutos de desinfecção. 3. Biofouling Crescimento de biofilmes microbiológicos em ambientes ricos em nutrientes. 4. Fouling particulado Acúmulo de sólidos suspensos em sistemas com pré-filtração deficiente. Veja alguns exemplos visuais de fouling em

Leia Mais

Reaproveitamento de água em torres de resfriamento

O reaproveitamento de água tem se tornado uma prática essencial para empresas que buscam sustentabilidade e eficiência operacional. Em sistemas de torres de resfriamento, onde há grande consumo de água, a osmose reversa (OR) se destaca como uma tecnologia estratégica para reduzir custos e otimizar recursos hídricos. Ao aplicar a OR para o reaproveitamento de água em torres de resfriamento, é possível alcançar benefícios diretos como: 1. Redução da necessidade de água fresca Menos captação de recursos naturais e menores despesas com abastecimento. 2. Controle rigoroso dos sólidos dissolvidos e contaminantes Isto prolonga a vida útil das torres e evita problemas de incrustação e corrosão. 3. Melhoria na eficiência das torres de resfriamento Com água de maior qualidade, o desempenho térmico é otimizado, reduzindo custos de manutenção. Membranas de alto desempenho para condições severas O sucesso do reaproveitamento de água depende do uso de membranas adequadas. Algumas opções avançadas e disponíveis na Liter são: – MaxRO: projetada para oferecer alta rejeição de sais e eficiência em sistemas robustos; – LG BW 400 R G2: ideal para garantir excelente desempenho em diferentes qualidades de água; – LG BW 400 AFR G2: com maior resistência a incrustações e incrustantes, prolongando o tempo

Leia Mais