Controle de pH e problemas com carbonato de cálcio na osmose reversa

O controle de pH surge como uma estratégia central na prevenção do problema de formação de incrustações, principalmente pelo carbonato de cálcio (CaCO₃), um dos principais responsáveis por perdas de desempenho e redução da vida útil das membranas de osmose reversa. A eficiência desses sistemas depende diretamente da qualidade da água de alimentação e do controle rigoroso de variáveis operacionais.

Como o carbonato de cálcio prejudica as membranas de osmose reversa

O carbonato de cálcio é um sal pouco solúvel que precipita quando a concentração de íons cálcio (Ca²⁺) e carbonato (CO₃²⁻) ultrapassa o limite de solubilidade. Esse depósito sólido, chamado de scaling, gera diversos efeitos indesejados, como o aumento da pressão diferencial, a redução da vazão de permeado, a elevação do consumo de energia e a diminuição da vida útil das membranas.

Um dos principais fatores que favorecem a formação de carbonato de cálcio é justamente o pH da água. Quanto maior o pH, maior a tendência de precipitação.

O controle de pH atua diretamente sobre as formas químicas do carbono inorgânico presentes na água. Variações no pH alteram o equilíbrio entre dióxido de carbono, ácido carbônico, bicarbonato e carbonato, modificando o risco de precipitação de CaCO₃:

– pH abaixo de 6,5 (meio ácido): a maior parte do carbono está na forma de CO₂ ou H₂CO₃. A solubilidade do carbonato de cálcio é alta, e o risco de incrustação é baixo.

– pH entre 7 e 8,5 (neutro a levemente alcalino): há maior presença de bicarbonato (HCO₃⁻), que, em contato com cálcio, pode começar a formar carbonato de cálcio, principalmente em sistemas com alta recuperação.

– pH acima de 8,5 (alcalino): o bicarbonato se converte em carbonato (CO₃²⁻), potencializando a rápida precipitação de carbonato de cálcio, com maior risco de scaling severo.

Por isso, o controle de pH rigoroso é uma das formas mais efetivas de manter o equilíbrio químico e preservar a integridade do sistema de osmose reversa.

Estratégias práticas para o controle de pH e prevenção de incrustações

Diversas medidas podem ser aplicadas para garantir um controle de pH adequado e minimizar os riscos de formação de carbonato de cálcio:

1. Acidificação da água de alimentação

A dosagem controlada de ácidos (como ácido sulfúrico ou clorídrico) reduz o pH, favorecendo as formas solúveis de carbono inorgânico.

2. Uso de anti-incrustantes específicos

Inibidores de incrustação atuam na dispersão de cristais e dificultam a formação de depósitos sólidos nas membranas.

3. Pré-tratamento por abrandamento (troca iônica)

A remoção dos íons cálcio e magnésio antes da osmose elimina os principais agentes formadores de incrustação.

4. Controle da taxa de recuperação do sistema

Operar o sistema dentro dos limites adequados de recuperação evita concentrações críticas que favorecem o scaling.

O controle de pH não é apenas uma prática recomendada, é um pilar técnico indispensável na operação de sistemas de osmose reversa. Ajustar o pH de forma adequada permite prevenir incrustações, otimizar a performance do sistema, reduzir custos operacionais e prolongar a vida útil das membranas.

Como a Liter pode ajudar no controle do pH

Na Liter, oferecemos soluções completas em tratamento de água, com suporte técnico especializado em controle de pH, sistemas de abrandamento e monitoramento contínuo da performance dos sistemas de osmose reversa. Nossos serviços e produtos são personalizados para cada aplicação industrial, garantindo segurança, eficiência e durabilidade para seu processo.

Leia também: Contaminantes e pré-tratamentos para osmose reversa: o que você precisa saber.

Compartilhe esse conteúdo:

Leia também

Entenda quais são os problemas mais comuns em leitos mistos

Os leitos mistos de resinas de troca iônica são amplamente utilizados no polimento final da água, especialmente em sistemas que exigem elevada pureza. Em geral, esses leitos são posicionados após sistemas de desmineralização (leitos catiônicos e aniônicos em série) ou após osmose reversa, removendo os íons residuais presentes em baixas concentrações. Quando bem dimensionados e operados, os leitos mistos são capazes de entregar água com resistividades típicas na faixa de 15 a 18 MΩ.cm, atendendo aplicações críticas em geração de vapor de alta pressão, indústria eletrônica, farmacêutica, cosmética e laboratórios analíticos. Porém, justamente por operarem em condições sensíveis, também são suscetíveis a uma série de condições recorrentes que afetam a qualidade da água e a confiabilidade do sistema. A seguir, apresentamos os problemas mais comuns em leitos mistos, suas causas e boas práticas para operação, manutenção e escolha correta das resinas. Problemas mais frequentes em leitos mistos e suas causas Apesar da alta eficiência, alguns problemas se repetem na operação de leitos mistos. Em grande parte dos casos, as causas estão associadas a falhas de regeneração, projeto, operação ou manutenção. 1. Qualidade da água fora da especificação Um dos sinais mais claros de problemas em leitos mistos é a saída

Leia Mais

Como escolher entre resinas aniônicas fracas e fortes?

As resinas aniônicas desempenham um papel fundamental nos sistemas de troca iônica destinados à remoção de ânions como cloretos, sulfatos, nitratos e sílica. Utilizadas em indústrias, hospitais, laboratórios e diversos processos críticos, elas garantem a qualidade da água desmineralizada, atendendo padrões rigorosos de pureza. Na prática, existem dois grandes grupos: resinas aniônicas fracas (WBA) e resinas aniônicas fortes (SBA). Apesar de desempenharem funções complementares, cada uma delas possui características específicas que influenciam diretamente a eficiência do sistema e o custo operacional. Neste artigo, você entenderá essas diferenças e descobrirá como escolher a resina ideal para cada aplicação, além de ver como a Liter apoia seus projetos com engenharia especializada e soluções completas. O que são resinas aniônicas e como funcionam? As resinas aniônicas são materiais poliméricos compostos por grupos funcionais com carga positiva que atraem e trocam íons negativos presentes na água. Durante a operação, esses grupos capturam ânions indesejados, retendo-os em sua matriz para liberar outro íon no lugar, geralmente hidroxila (OH⁻). Essa troca é essencial para alcançar níveis elevados de desmineralização, principalmente quando combinada com resinas catiônicas em sistemas de duas etapas ou de ciclo completo. 1. Resinas Aniônicas Fracas (WBA) As resinas aniônicas fracas possuem grupos funcionais

Leia Mais