Como calcular o ciclo de um abrandador de água

como calcular o ciclo de um abrandador de água

Saber calcular o ciclo de um abrandador de água é importante para dimensionar, configurar ou solucionar problemas relacionados a este sistema. Abrandadores são sistemas de troca iônica projetados para remover íons de cálcio e magnésio, responsáveis pelas incrustações em caldeiras, torres de resfriamento e em sistemas de osmose reversa, o que os torna essenciais em processos eficientes de filtragem e purificação de água.

A quantidade de dureza que um abrandador pode remover entre as regenerações é conhecida como o ciclo do abrandador e pode ser expresso em unidades volumétricas de água. Neste post iremos explicar como calcular o ciclo de um abrandador para tornar o sistema mais eficaz.

Leia também: Como dimensionar um abrandador de água corretamente

    

Passo a passo para calcular o ciclo de um abrandador de água

Em primeiro lugar é necessário calcular a capacidade do abrandador. Para isso, é preciso saber:

  • A dureza da água bruta em ppm;
  • O volume de resina em litros (L);
  • A dosagem de sal em gramas (g) / litro (L) de resina.

A dosagem de sal durante a regeneração determina a capacidade de troca da resina. Normalmente, uma dosagem de sal de 250g/L de resina é usada para fornecer uma capacidade de troca de 68.640mg de CaCO3/L de resina. Doses mais baixas de sal reduzem a capacidade, mas permitem um uso mais econômico do sal, que é a base para a dosagem de economia de sal.

Em uma situação hipotética, em que a água possua dureza de 120ppm de CaCO3 e o abrandador possua 175L de resina, que é regenerada utilizando-se 250g de sal por litro de resina, temos:

Cálculo da capacidade do abrandador em miligramas (mg):

Cálculo da capacidade do abrandador em miligramas (mg)
    

Calcule o ciclo do abrandador em m³

Calcule o ciclo do abrandador em m³
    

Adotando-se um fator de segurança de 10%, recomenda-se operar as regenerações deste equipamento a cada 90m³, entendendo-se que:

CTab = Capacidade total do abrandador (mg)

V = Volume de resina (L)

CT = Capacidade total da resina (ppm de CaCO3)

C = Ciclo do abrandador (L; m³)

DT = Dureza total (ppm de CaCO3)

A Liter possui uma linha completa de resinas de troca iônica para atender todas as demandas de sua indústria. Para conhecer estes e outros produtos entre em contato conosco.

Compartilhe esse conteúdo:

Leia também

Como escolher entre resinas aniônicas fracas e fortes?

As resinas aniônicas desempenham um papel fundamental nos sistemas de troca iônica destinados à remoção de ânions como cloretos, sulfatos, nitratos e sílica. Utilizadas em indústrias, hospitais, laboratórios e diversos processos críticos, elas garantem a qualidade da água desmineralizada, atendendo padrões rigorosos de pureza. Na prática, existem dois grandes grupos: resinas aniônicas fracas (WBA) e resinas aniônicas fortes (SBA). Apesar de desempenharem funções complementares, cada uma delas possui características específicas que influenciam diretamente a eficiência do sistema e o custo operacional. Neste artigo, você entenderá essas diferenças e descobrirá como escolher a resina ideal para cada aplicação, além de ver como a Liter apoia seus projetos com engenharia especializada e soluções completas. O que são resinas aniônicas e como funcionam? As resinas aniônicas são materiais poliméricos compostos por grupos funcionais com carga positiva que atraem e trocam íons negativos presentes na água. Durante a operação, esses grupos capturam ânions indesejados, retendo-os em sua matriz para liberar outro íon no lugar, geralmente hidroxila (OH⁻). Essa troca é essencial para alcançar níveis elevados de desmineralização, principalmente quando combinada com resinas catiônicas em sistemas de duas etapas ou de ciclo completo. 1. Resinas Aniônicas Fracas (WBA) As resinas aniônicas fracas possuem grupos funcionais

Leia Mais

Desinfecção avançada com ultravioleta e cloração: combinar tecnologias eleva a segurança da água

Usar ultravioleta e cloração de forma combinada cria uma barreira múltipla capaz de ampliar o espectro de inativação de microrganismos, reduzir riscos operacionais e otimizar custos. Isso porque a desinfecção representa a última “trava” de segurança no tratamento de água e onde falhas custam caro. A seguir, você entende como funciona, quando aplicar e quais cuidados de projeto e operação adotamos na Liter. Ultravioleta e cloração: entregas e limites de cada tecnologia A radiação ultravioleta (UV) atua danificando o material genético (DNA/RNA) por fotólise, impedindo a replicação microbiana. – Pontos fortes: ação imediata; não gera subprodutos químicos; eficiente contra cistos e oocistos (ex.: Giardia, Cryptosporidium). – Pontos de atenção: não deixa residual e depende de dose (mJ/cm²) e UVT da água; subdosagem pode permitir reativação. Já a cloração atua com substâncias como HOCl/OCl⁻ que oxidam estruturas celulares e enzimas; deixa residual que protege reservatórios e redes contra recontaminação. – Pontos fortes: custo competitivo; controle de biofilme/alga; essencial para distribuição e reúso com armazenamento. – Pontos de atenção: alguns organismos são mais resistentes; pode formar subprodutos (ex.: THMs/HAA5) quando mal dosado ou em água com altos precursores orgânicos; sensível a pH (HOCl é mais eficaz em pH levemente ácido/neutro). Por que

Leia Mais