O que é a UVT da água e como ela impacta seu sistema de desinfecção por luz UV

Um sistema de luz ultravioleta inativa os microrganismos presentes na água causando danos ao seu DNA, impedindo assim sua reprodução e proliferação. Contudo, para que a tecnologia seja eficaz o microrganismo deve ser exposto a dosagem de radiação adequada, o que irá propiciar o grau de remoção desejado. Alguns destes conceitos foram abordados no texto Como calcular a dosagem de luz ultravioleta para desinfecção de água?

Todos os fatores citados acima são afetados pela transmitância da água, chamada de UVT. A UVT da água pode ser entendida como a quantidade de luz que é transmitida por uma amostra, de caminho óptico fixo, em um comprimento de onda fixo. A Figura 1 ilustra este conceito de UVT da água, onde inicialmente um feixe de luz com intensidade I0 é emitido através de uma cubeta de comprimento l, contendo uma amostra com determinada concentração c, a qual é capaz de atenuar o feixe de luz a uma intensidade final I.

Figura 1 – Atenuação de um feixe de luz emitido em um comprimento de onda específico (λ) por uma amostra líquida com concentração c.

A parcela de luz absorvida pela amostra pode ser calculada pela Equação 1, sendo que sua relação com a transmitância é representada pela Equação 2.

A(λ)=  log⁡(I_0/I)     (1)

T(λ)=10^(-A(λ) )       (2)

Ao analisarmos a Figura 1 e as Equações 1 e 2, fica claro que a absorbância e a transmitância de uma amostra de água dependem do comprimento de onda do feixe de luz emitido. Em aplicações de sistemas ultravioleta esta medida é realizada em 254 nm, pois corresponde ao comprimento de emissão das lâmpadas de baixa pressão. Para sistemas de média pressão, onde a lâmpada irá apresentar um espectro de emissão policromático, a medida de UVT da água pode ser feita em diferentes comprimentos de onda, cobrindo a faixa de emissão da lâmpada e melhorando a precisão do dimensionamento do equipamento. 

A Figura 2 apresenta a faixa de emissão das lâmpadas de baixa e média pressão.

Figura 2 – Espectro de emissão de luz das lâmpadas de baixa e média pressão.

(Fonte: Adaptado de Crittenden et al., 2012.)

Quanto menor for o valor de UVT da água, maior terá que ser a potência da lâmpada para aplicar a mesma dosagem, mantendo fixo o tamanho do reator e a vazão do sistema. Isso ocorre devido a maior absorção da luz pela água. Veja abaixo alguns valores de referência para UVT em diferentes matrizes de água, levando em conta tanto absorbância quanto transmitância (λ = 254 nm):

– Águas subterrâneas: A = 0,0706-0,0088 e T = 85-98%

– Águas superficiais sem tratamento: A = 0,3010-0,0269 e T = 50-94%

– Águas superficiais após coagulação, floculação e sedimentação: A = 0,0969-0,0132 e T = 80-97%

– Águas superficiais após coagulação, floculação, sedimentação e filtração: A = 0,0706-0,0088 e T = 85-98%

– Águas superficiais após microfiltração: A = 0,0706-0,0088 e T = 85-98%

– Águas superficiais após osmose reversa: A = 0,0458-0,0044 e T = 90-99%

Os valores acima podem ser utilizados como diretrizes, porém, recomenda-se que a medição laboratorial da UVT da água seja feita sempre que necessário, confirmando o valor presente na matriz de água a ser tratada.

A Liter possui conhecimento e estrutura para a análise da UVT em diferentes matrizes de água e efluentes para aplicações de sistemas ultravioleta! Entre em contato e conheça nossos produtos.

Leia também: Como ocorre a desinfecção da água por luz ultravioleta.

Compartilhe esse conteúdo:

Leia também

Problemas e soluções em sistemas UV

Neste artigo, você vai ver os problemas mais comuns e as soluções em sistemas UV para diagnosticar rapidamente a causa raiz, e como a Liter atua no diagnóstico e otimização para recuperar eficiência e segurança microbiológica com ações objetivas. Isso é importante porque a desinfecção por luz ultravioleta (UV) se consolidou como uma alternativa forte a métodos químicos por não gerar subprodutos e não alterar sabor e odor. Na prática, porém, o desempenho do UV não depende só de ligar o equipamento, mas sim da dose entregue, qualidade da água, hidráulica, manutenção e controle. Como funcionam as soluções em sistemas UV na desinfecção Em sistemas UV, a água passa por uma câmara onde a radiação ultravioleta (tipicamente UVC) atinge os microrganismos e os inativa, impedindo sua multiplicação. Para isso acontecer de forma consistente, o sistema precisa entregar uma dose adequada, que depende principalmente de: – Transmissão UV (UVT) e qualidade óptica da água (turbidez, cor, matéria orgânica, ferro/manganês etc.); – Potência efetiva da lâmpada (envelhecimento, balastro, estabilidade elétrica); – Hidráulica (vazão real, tempo de contato, curtos-circuitos hidráulicos, mistura); – Limpeza da luva de quartzo (fouling e incrustação “roubam” UV). É aqui que entram as soluções em sistemas UV: identificar qual

Leia Mais

Como aumentar o ciclo de concentração em caldeiras

Entender e otimizar o ciclo de concentração em caldeiras é uma das formas mais diretas de reduzir purgas, economizar água/energia e proteger o equipamento. Isso porque mesmo com o tratamento convencional da água de alimentação, ainda podem permanecer pequenas quantidades de sais dissolvidos. Dentro da caldeira, a água evapora para gerar vapor, e os sais não evaporam junto. Resultado: eles se concentram no interior do sistema, podendo causar incrustação, danos estruturais, perda de eficiência e aumento no consumo de combustível. O que é o ciclo de concentração em caldeiras? O ciclo de concentração em caldeiras é a relação entre a concentração de um determinado íon (ou parâmetro) na água da caldeira e a concentração desse mesmo íon na água de alimentação. De forma prática: ele indica quantas vezes os sólidos dissolvidos estão mais concentrados dentro da caldeira em comparação à água que entra. A expressão mais comum é: N = [C]caldeira / [C]alimentação Onde: N = número de ciclos (adimensional) [C]caldeira = concentração de um íon na caldeira [C]alimentação = concentração do mesmo íon na água de alimentação A quantidade máxima de ciclos permitidos deve respeitar os limites do fabricante (exemplo: condutividade, sílica, alcalinidade etc.). Quanto maior o ciclo de

Leia Mais