Dimensionamento das válvulas Runlucky para uso em projetos

As válvulas são, de modo geral, caracterizadas de acordo com sua constante de fluxo, chamada de KV (sistema de unidades internacional) e CV (sistema de unidades americano). Neste post, vamos esclarecer como utilizar os valores de KV das válvulas Runlucky nos projetos de filtros e sistemas com resina de troca iônica, melhorando a precisão de cálculos de perda de carga e vazão.

Antes disso, é importante relembrar a função da constante de fluxo, que é utilizada para o dimensionamento das válvulas. Seu valor é utilizado para selecionar um dispositivo que permita o fluxo desejado, para que ocorra uma queda de pressão fixa.

A teoria sobre válvulas é extensa, e adaptações nas equações principais são empregadas para casos específicos com fluidos específicos. Para o leitor interessado em se aprofundar, sugere-se uma leitura do livro-texto da Emerson e das normas europeias que tratam sobre controle e automação.

Teoria básica sobre válvulas

A Figura 1 mostra o diagrama representativo de uma válvula qualquer instalada em uma tubulação, no qual mede-se a pressão de entrada e saída:

Figura 1 – Diagrama representativo de uma válvula genérica instalada em uma rede hidráulica.

Considerando um fluido incompressível em situação isenta de cavitação, a vazão Q pode ser calculada pela Equação 1.

(1)
Q é a vazão (m3/h), ΔP é a perda de carga na válvula (bar), ρ é a densidade (o subscrito f se refere ao fluido escoando), KV é a constante de fluxo característica da válvula e f(l) a função de abertura.

A função de abertura correlaciona como o fluxo varia em diferentes aberturas da válvula. Por exemplo, para uma válvula globo, ao conhecermos sua função de abertura podemos calcular a vazão com a válvula com 10%, 20%, 30% (entre outros valores) de abertura.

A função de abertura está associada à construção da válvula, principalmente com o plug de fechamento. Diferentes geometrias fornecem diferentes funções de abertura.

A perda de carga na válvula é calculada pela diferença entre P1 e P2.

Aplicação às válvulas Runlucky

Para ilustrar o uso dos dados de KV disponíveis nos manuais das válvulas, considere a situação de um abrandador dimensionado para uma vazão de 3,0 m3/h. Pode-se optar pelo uso das válvulas F63C3 (vazão nominal 4,0 m3/h) ou pelo modelo F130A3 (vazão nominal 6,0 m3/h).

As Figuras 2 e 3 mostram a curva de fluxo característica e o respectivo KV para os dois modelos de válvulas citados:

Figura 2 – Curva de fluxo para etapa operacional da válvula de abrandador modelo F63C3.
Figura 3 – Curva de fluxo para etapa operacional da válvula de abrandador modelo F130A3.

Podemos calcular a perda de carga necessária em cada modelo de válvula resolvendo a Equação 1 para ΔP, assim:

(2)

Como o fluido a ser abrandado é água, o termo de densidades assume valor igual a 1. Estamos interessados em saber a vazão na válvula quando sua abertura estiver completa, assim, a função de abertura também assume valor igual a 1. Assim, calculando a perda de carga para uma vazão de 3,0 m3/h, temos:

  • F63C3: ΔP = 0,92 bar
  • F130A3: ΔP = 0,39 bar

Desta forma, observamos que, se a maior perda de carga não for um problema, podemos optar pela menor válvula.

Imagine que, em vez de um abrandador, o sistema que seria montado fosse um desmineralizador de leito separado, com filtro de carvão como pré-tratamento e leito de resina mista como pós-tratamento, ambos para a mesma vazão de 3,0 m3/h.

Neste segundo caso teríamos quatro válvulas em série e, dependendo do restante do sistema hidráulico, a perda de carga poderia ser um fator decisivo. Adotar o uso de válvulas F130A3 nas colunas de resina catiônica e aniônica seria um meio de reduzir a perda de carga e diminuir a potência necessária na bomba de alimentação.

Aplicação para filtros: Vazão de retrolavagem

No projeto de filtros, as informações de KV são muito úteis para o dimensionamento das condições de retrolavagem. A Figura 4 mostra um desenho representativo da instalação de um filtro, identificando as principais informações do processo.

Figura 4 – Diagrama representativo da instalação de um filtro, identificando as principais variáveis do processo.

Com o KV da etapa de retrolavagem pode-se calcular a perda de carga necessária para obter a vazão de projeto para esta etapa. Como recomenda-se que o dreno seja direcionado a uma calha coletora, a qual efetivamente direciona o efluente gerado para o ponto de disposição final, a pressão no ponto 3 é igual a zero (tubulação descarregando sob pressão atmosférica). Assim, a própria pressão de entrada na válvula ditará a vazão na etapa de retrolavagem.

Por exemplo, considere um filtro que necessita de 12,0 m3/h de vazão de retrolavagem, e que este filtro tenha sido montado utilizando uma válvula F134A1 (vazão nominal de 8 m3/h). O valor de KV para etapa de retrolavagem nesta válvula é de 8,60, assim a perda de carga calculada é de:

  • F134A1: ΔP = 1,95 bar @ 12,0 m3/h.

Adicionando os valores de perda de carga na linha hidráulica, facilmente dimensiona-se a bomba necessária para etapa de retrolavagem.

Leia também: Problemas e Soluções para Válvulas de Abrandador da Runlucky

Compartilhe esse conteúdo:

Leia também

Análise de água e monitoramento para sistemas de luz ultravioleta

A desinfecção por luz ultravioleta é um dos métodos mais eficazes para a inativação microbiológica de uma ampla gama de patógenos presentes na água. No entanto, para garantir a eficiência máxima do processo e a durabilidade dos equipamentos, é fundamental realizar uma análise de água criteriosa e manter um programa de monitoramento constante dos sistemas de luz ultravioleta. Por que a qualidade da água é tão importante para a luz ultravioleta? A eficiência dos sistemas de luz ultravioleta depende diretamente das características da água de alimentação. Quando os parâmetros da água estão fora dos padrões recomendados, há risco de comprometer a passagem da luz e, consequentemente, a eficácia da desinfecção. Veja na tabela abaixo os principais parâmetros recomendados para água de entrada em sistemas de desinfecção por luz ultravioleta: Transmitância UVT254: o parâmetro mais crítico Entre todos os parâmetros, a transmitância UVT254 da água é o mais relevante para o desempenho do sistema de luz ultravioleta. Esse índice mede a capacidade da água de permitir a passagem da radiação UV. Quando a transmitância está baixa, menos luz chega ao alvo, comprometendo a inativação microbiológica. Além disso, valores de turbidez superiores a 1 NTU e cor aparente acima de 15 mg

Leia Mais

Qualidade da água é decisiva para a performance das membranas de osmose reversa

A eficiência da osmose reversa (OR) está diretamente ligada a um ponto crítico: a qualidade da água de entrada. Quando essa qualidade é negligenciada, os impactos são imediatos, desde incrustações e crescimento biológico até falhas estruturais nas membranas. Por que a qualidade da água é tão importante? Embora o sistema de osmose reversa tenha alta capacidade de retenção de contaminantes, ele não foi projetado para atuar sozinho contra uma água bruta sem tratamento prévio. A osmose reversa é a etapa de polimento do processo, e não uma solução para corrigir falhas de pré-tratamento. Se os parâmetros da água de alimentação estiverem fora dos limites recomendados, os problemas surgem rapidamente: obstruções, redução do fluxo de permeado, aumento da pressão diferencial, baixa rejeição de sais e redução drástica da vida útil das membranas. Um dos principais indicadores da qualidade da água é o SDI (índice de densidade de sujeira), em que valores acima de 3 indicam alto risco de colmatação. Diversos contaminantes afetam diretamente a operação das membranas, incluindo: – Cloro livre, que pode oxidar membranas de poliamida; – Ferro e manganês, que se precipitam formando depósitos insolúveis; – Cálcio e magnésio, responsáveis por incrustações calcárias; – Sílica coloidal, difícil de remover

Leia Mais