Como funcionam os Injetores de Válvulas Runlucky

Os injetores de válvulas Runlucky são dispositivos que as diferenciam das válvulas para filtros, possibilitando a sucção do produto químico de interesse apenas com energia hidráulica. Mas antes de entrar em detalhes sobre o funcionamento dos injetores, vamos relembrar as classificações destas válvulas quanto à sua aplicação.

As válvulas Runlucky se dividem entre aquelas para abrandadores e para filtros. As destinadas a abrandadorespodem ser aplicadas também na montagem de sistemas de desmineralização. Elas se diferenciam das válvulas de filtro por apresentarem em sua estrutura dispositivos que permitem a entrada dos químicos utilizados para a regeneração das resinas de troca iônica (salmoura, ácidos ou soda cáustica).

Para abrandador, com injetor.
Para filtros, sem injetor.

Funcionamento dos Injetores de Válvulas Runlucky

Esses dispositivos que permitem a entrada dos químicos são os injetores. Os modelos utilizados nas válvulas Runlucky são:

– Série 63 (6301 a 6310) – 2,0 a 6,0 m3/h;

– Série 74 (7401 a 7406) – 8,0 a 10,0 m3/h;

– Série 77 (7701 a 7705) – 15,0 a 20,0 m3/h;

– Série 78 (7801 a 7801) – Acima de 40,0 m3/h.

Os injetores se baseiam no princípio de Venturi, possibilitando a sucção do produto químico de interesse apenas com energia hidráulica. A Figura 1 apresenta um desenho representativo de um tubo do tipo Venturi.

O escoamento principal é direcionado com uma pressão P1 da seção 1 até a seção 2, de mesmo diâmetro, consequentemente, mesma área de seção transversal (A1 = A2). Contudo, no meio do trajeto existe uma redução da área disponível para o escoamento, representado pelo ponto 3 na Figura 1.

Figura 1 – Tubo do tipo Venturi, exemplificando os efeitos causados devido a contração da seção transversal.

Para que o princípio de conservação da massa seja respeitado, a velocidade do escoamento na seção 3 deverá aumentar, de modo a passar a mesma quantidade de fluido em uma área de seção transversal menor (A3 < A1=A2). Se aplicarmos a Equação de Bernoulli (considerando um fluido invíscido em regime turbulento) entre os pontos 1 e 3, chega-se à seguinte relação:

Na qual P é a pressão, ϑ é a velocidade, g é a aceleração gravitacional e γ é o peso específico do fluido.

Analisando a Equação 1, observamos que para manter a igualdade entre os termos a pressão no ponto 3 deverá reduzir, para compensar o aumento da velocidade na garganta do Venturi. O funcionamento dos injetores das válvulas Runlucky baseia-se neste princípio, uma vez que podemos utilizar este ponto de menor pressão para injetarmos outra corrente de fluido. A Figura 2 apresenta o injetor Venturi, agora com uma entrada secundária em sua garganta:

Figura 2 – Tubo do tipo Venturi com entrada secundária na garganta.

A magnitude da vazão secundária depende dos parâmetros geométricos do injetor e da diferença de pressão entre a entrada e a saída do dispositivo.

Compartilhe esse conteúdo:

Leia também

Problemas e soluções em sistemas UV

Neste artigo, você vai ver os problemas mais comuns e as soluções em sistemas UV para diagnosticar rapidamente a causa raiz, e como a Liter atua no diagnóstico e otimização para recuperar eficiência e segurança microbiológica com ações objetivas. Isso é importante porque a desinfecção por luz ultravioleta (UV) se consolidou como uma alternativa forte a métodos químicos por não gerar subprodutos e não alterar sabor e odor. Na prática, porém, o desempenho do UV não depende só de ligar o equipamento, mas sim da dose entregue, qualidade da água, hidráulica, manutenção e controle. Como funcionam as soluções em sistemas UV na desinfecção Em sistemas UV, a água passa por uma câmara onde a radiação ultravioleta (tipicamente UVC) atinge os microrganismos e os inativa, impedindo sua multiplicação. Para isso acontecer de forma consistente, o sistema precisa entregar uma dose adequada, que depende principalmente de: – Transmissão UV (UVT) e qualidade óptica da água (turbidez, cor, matéria orgânica, ferro/manganês etc.); – Potência efetiva da lâmpada (envelhecimento, balastro, estabilidade elétrica); – Hidráulica (vazão real, tempo de contato, curtos-circuitos hidráulicos, mistura); – Limpeza da luva de quartzo (fouling e incrustação “roubam” UV). É aqui que entram as soluções em sistemas UV: identificar qual

Leia Mais

Como aumentar o ciclo de concentração em caldeiras

Entender e otimizar o ciclo de concentração em caldeiras é uma das formas mais diretas de reduzir purgas, economizar água/energia e proteger o equipamento. Isso porque mesmo com o tratamento convencional da água de alimentação, ainda podem permanecer pequenas quantidades de sais dissolvidos. Dentro da caldeira, a água evapora para gerar vapor, e os sais não evaporam junto. Resultado: eles se concentram no interior do sistema, podendo causar incrustação, danos estruturais, perda de eficiência e aumento no consumo de combustível. O que é o ciclo de concentração em caldeiras? O ciclo de concentração em caldeiras é a relação entre a concentração de um determinado íon (ou parâmetro) na água da caldeira e a concentração desse mesmo íon na água de alimentação. De forma prática: ele indica quantas vezes os sólidos dissolvidos estão mais concentrados dentro da caldeira em comparação à água que entra. A expressão mais comum é: N = [C]caldeira / [C]alimentação Onde: N = número de ciclos (adimensional) [C]caldeira = concentração de um íon na caldeira [C]alimentação = concentração do mesmo íon na água de alimentação A quantidade máxima de ciclos permitidos deve respeitar os limites do fabricante (exemplo: condutividade, sílica, alcalinidade etc.). Quanto maior o ciclo de

Leia Mais