Como funcionam os Injetores de Válvulas Runlucky

Os injetores de válvulas Runlucky são dispositivos que as diferenciam das válvulas para filtros, possibilitando a sucção do produto químico de interesse apenas com energia hidráulica. Mas antes de entrar em detalhes sobre o funcionamento dos injetores, vamos relembrar as classificações destas válvulas quanto à sua aplicação.

As válvulas Runlucky se dividem entre aquelas para abrandadores e para filtros. As destinadas a abrandadorespodem ser aplicadas também na montagem de sistemas de desmineralização. Elas se diferenciam das válvulas de filtro por apresentarem em sua estrutura dispositivos que permitem a entrada dos químicos utilizados para a regeneração das resinas de troca iônica (salmoura, ácidos ou soda cáustica).

Para abrandador, com injetor.
Para filtros, sem injetor.

Funcionamento dos Injetores de Válvulas Runlucky

Esses dispositivos que permitem a entrada dos químicos são os injetores. Os modelos utilizados nas válvulas Runlucky são:

– Série 63 (6301 a 6310) – 2,0 a 6,0 m3/h;

– Série 74 (7401 a 7406) – 8,0 a 10,0 m3/h;

– Série 77 (7701 a 7705) – 15,0 a 20,0 m3/h;

– Série 78 (7801 a 7801) – Acima de 40,0 m3/h.

Os injetores se baseiam no princípio de Venturi, possibilitando a sucção do produto químico de interesse apenas com energia hidráulica. A Figura 1 apresenta um desenho representativo de um tubo do tipo Venturi.

O escoamento principal é direcionado com uma pressão P1 da seção 1 até a seção 2, de mesmo diâmetro, consequentemente, mesma área de seção transversal (A1 = A2). Contudo, no meio do trajeto existe uma redução da área disponível para o escoamento, representado pelo ponto 3 na Figura 1.

Figura 1 – Tubo do tipo Venturi, exemplificando os efeitos causados devido a contração da seção transversal.

Para que o princípio de conservação da massa seja respeitado, a velocidade do escoamento na seção 3 deverá aumentar, de modo a passar a mesma quantidade de fluido em uma área de seção transversal menor (A3 < A1=A2). Se aplicarmos a Equação de Bernoulli (considerando um fluido invíscido em regime turbulento) entre os pontos 1 e 3, chega-se à seguinte relação:

Na qual P é a pressão, ϑ é a velocidade, g é a aceleração gravitacional e γ é o peso específico do fluido.

Analisando a Equação 1, observamos que para manter a igualdade entre os termos a pressão no ponto 3 deverá reduzir, para compensar o aumento da velocidade na garganta do Venturi. O funcionamento dos injetores das válvulas Runlucky baseia-se neste princípio, uma vez que podemos utilizar este ponto de menor pressão para injetarmos outra corrente de fluido. A Figura 2 apresenta o injetor Venturi, agora com uma entrada secundária em sua garganta:

Figura 2 – Tubo do tipo Venturi com entrada secundária na garganta.

A magnitude da vazão secundária depende dos parâmetros geométricos do injetor e da diferença de pressão entre a entrada e a saída do dispositivo.

Compartilhe esse conteúdo:

Leia também

O que fazer quando a limpeza química não recupera a eficiência do sistema?

A limpeza química é um dos processos mais importantes para restaurar a eficiência de sistemas de osmose reversa. Realizada por meio do CIP (Clean-In-Place), ela tem como objetivo remover incrustações, biofilmes e depósitos orgânicos acumulados nas membranas. Porém, nem sempre o resultado esperado é alcançado. Quando o desempenho não retorna ao normal, é sinal de que algo mais sério pode estar acontecendo. Quando a limpeza química não resolve os potenciais problemas, as principais causas podem ser: – Decisão tardia: Quando os dados operacionais da planta não são monitorados e normalizados adequadamente, a limpeza química é feita apenas após os danos se tornarem irreversíveis. Como consequência, a eficiência operacional se deteriora de forma progressiva a cada ciclo. – Biofilmes resistentes: Biofilmes bem aderidos, compostos por microrganismos e material orgânico, podem impedir a remoção total das sujidades. Em casos assim, é necessário alternar agentes químicos ou realizar uma sequência de limpezas específicas para romper essa barreira protetora. – Danos físicos ou químicos nas membranas: Se as membranas forem expostas a produtos inadequados, pressões incorretas ou condições operacionais fora do padrão, podem ocorrer danos estruturais irreversíveis. Nesse cenário, a limpeza química não é suficiente para recuperar a performance do sistema. – Procedimento de

Leia Mais

Conservação de resinas de troca iônica na época de entressafra

Nas usinas de açúcar e etanol, a conservação de resinas de troca iônica durante a entressafra é um fator essencial para garantir o desempenho dos sistemas de desmineralização de água na próxima safra. Durante o período de inatividade, sem os devidos cuidados, as resinas podem sofrer degradação, contaminação e perda de capacidade, impactando diretamente a eficiência operacional e os custos da usina. Problemas comuns na conservação de resinas neste período Quando as resinas de troca iônica ficam paradas por longos períodos sem a conservação adequada, podem ocorrer diversos problemas, como: – Crescimento microbiológico: a presença de umidade e nutrientes na resina favorece o desenvolvimento de bactérias, fungos e biofilme, comprometendo sua capacidade de troca iônica. – Ressecamento e fissuras: a exposição ao ar pode levar ao ressecamento das esferas de resina, resultando em microfissuras que reduzem sua eficiência e durabilidade. – Contaminação com ferro e sílica: impurezas presentes na água ou em equipamentos podem impregnar as resinas, afetando seu desempenho. – Perda de capacidade de troca iônica: a falta de um método adequado de conservação pode acelerar o desgaste das resinas, aumentando a necessidade de reposição e os custos operacionais. Métodos recomendados para conservação de resinas de troca iônica A

Leia Mais