Análises avançadas em resinas de troca iônica: além do básico

As análises avançadas em resinas são empregadas quando uma avaliação minuciosa é necessária, recebendo esta denominação por utilizarem equipamentos de elevada tecnologia para sua confecção.

A análise de Microscopia Eletrônica de Varredura (MEV) permite a visualização detalhada da estrutura da resina. Devido ao seu elevado grau de ampliação é possível observar trincas, filmes microbianos aderidos nas esferas de resina, defeitos nas esferas, distribuição de poros, entre outras avarias. Propriedades granulométricas como esfericidade, alongamento e formato também podem ser determinadas com o uso do MEV nas análises avançadas em resinas.

A Figura 1 apresenta microscopias realizadas para resina KH-80 em ampliações de 25 vezes e 140 vezes, respectivamente.

Figura 1

Para indicar a composição química da superfície da resina é possível utilizar o Espectroscópio de Energia Dispersiva (EDS) acoplado com o MEV. A composição química pode ser determinada através de: forma pontual, onde se analisa a composição em um ponto especificado da amostra; trajetória em linha, onde se analisa a composição em uma linha reta predefinida sobre a amostra; ou pela confecção de mapas químicos.

O Quadro 1 apresenta o uso do EDS para determinação química em amostra de resina KH-80 em duas condições diferentes, sendo a primeira delas a amostra coletada do abrandador, logo após sua regeneração, e a amostra regenerada novamente em laboratório com 10% de NaCl. Os dados apresentados no Quadro 1 apresentam o potencial desta técnica na verificação de problemas operacionais e na identificação de medidas corretivas para os equipamentos de troca iônica.

Esquerda: Amostra KH-80 antes da regeneração, aumento 140x, lente LEI, escala 100 µm. Análise de EDS realizada nos pontos destacados.

Direita: Amostra KH-80 após regeneração NaCl 10% wt., aumento 140x, lente LEI, escala 100 µm. Análise de EDS realizada nos pontos destacados.

Quadro 1 – Análise de EDS realizado em amostras de KH-80 para verificação de contaminantes e possível perda de eficiência de regeneração da resina.

Comentários: Foi identificada a presença de cálcio (Ca) e magnésio (Mg) para os 4 pontos avaliados sobre a esfera de resina KH-80 enviada para análise. Para os 4 pontos, a intensidade dos picos de Ca e Mg foram maiores que para o pico de sódio (Na). Este fato indica que a resina não está sendo regenerada de maneira adequada, mantendo grande parte do Ca e Mg em sua estrutura. Para a amostra de resina regenerada com NaCl 10% wt. antes do procedimento de microscopia eletrônica, com detecção espectroscópica de energia dispersiva, os picos de Ca e Mg desapareceram e a intensidade dos picos de Na aumentaram. Este fato indica boa eficiência de regeneração da resina KH-80, constatando que as propriedades de troca iônica da resina estão em funcionamento normal. O enxofre (S), carbono (C) e oxigênio (O) são correspondentes à estrutura polimérica e grupos funcionais da resina. A presença do ouro (Au) deve-se ao recobrimento superficial feito nas amostras para reflexão dos elétrons, possibilitando a geração de imagens no MEV.

A Figura 2 apresenta o mapeamento químico realizado sobre a superfície de uma esfera de KH-80, para os elementos sódio (Na+) e enxofre (S), ambos presentes nos grupos funcionais da resina, o sódio como o contra-íon, e o enxofre como parte fundamental do grupo sulfônico que caracteriza o grupo funcional das resinas catiônicas fortes.

Figura 2 – Mapeamento químico sobre superfície da resina KH-80 após sua regeneração com NaCl.

Além das informações a respeito da composição química da sua superfície, medidas precisas podem ser alcançadas a partir das imagens obtidas no MEV em análises avançadas em resinas. A Figura 3 apresenta a obtenção do diâmetro de uma esfera de KH-80.

Figura 3 – Determinação do diâmetro de uma esfera de resina KH-80.

As análises avançadas em resinas, oferecidas pela Liter, compõem um conjunto poderoso de ferramentas para identificação de problemas operacionais e determinação da origem dos transtornos enfrentados em plantas de tratamento de água por troca iônica.

Leia também: Análises periféricas em resinas de troca iônica: um importante acompanhamento

Compartilhe esse conteúdo:

Leia também

Como aumentar o ciclo de concentração em caldeiras

Entender e otimizar o ciclo de concentração em caldeiras é uma das formas mais diretas de reduzir purgas, economizar água/energia e proteger o equipamento. Isso porque mesmo com o tratamento convencional da água de alimentação, ainda podem permanecer pequenas quantidades de sais dissolvidos. Dentro da caldeira, a água evapora para gerar vapor, e os sais não evaporam junto. Resultado: eles se concentram no interior do sistema, podendo causar incrustação, danos estruturais, perda de eficiência e aumento no consumo de combustível. O que é o ciclo de concentração em caldeiras? O ciclo de concentração em caldeiras é a relação entre a concentração de um determinado íon (ou parâmetro) na água da caldeira e a concentração desse mesmo íon na água de alimentação. De forma prática: ele indica quantas vezes os sólidos dissolvidos estão mais concentrados dentro da caldeira em comparação à água que entra. A expressão mais comum é: N = [C]caldeira / [C]alimentação Onde: N = número de ciclos (adimensional) [C]caldeira = concentração de um íon na caldeira [C]alimentação = concentração do mesmo íon na água de alimentação A quantidade máxima de ciclos permitidos deve respeitar os limites do fabricante (exemplo: condutividade, sílica, alcalinidade etc.). Quanto maior o ciclo de

Leia Mais

Qualidade da água de entrada para sistema de osmose reversa

A qualidade da água de entrada é um dos fatores mais determinantes para o desempenho, a confiabilidade e a vida útil de um sistema de osmose reversa (OR). Como a OR é um processo de separação por membranas, qualquer desvio na qualidade dessa água de entrada pode resultar em problemas sérios, como incrustação, fouling orgânico, formação de biofilme, aumento de consumo de energia e redução da vazão de permeado. Por isso, entender quais parâmetros definem uma boa qualidade de água de entrada e como tratá-la corretamente antes das membranas é essencial para garantir eficiência e reduzir custos operacionais. O que é a água de entrada em um sistema de osmose reversa? Chamamos de água de entrada (ou água de alimentação) aquela que chega ao sistema de osmose reversa após as etapas anteriores de tratamento, como filtração, clarificação, abrandamento ou outros processos de condicionamento. É essa água de entrada que entra efetivamente nos vasos de pressão e entra em contato direto com as membranas. Se ela não estiver dentro dos parâmetros recomendados pelos fabricantes, os riscos de falhas e paradas não programadas aumentam significativamente. Em outras palavras: não existe bom desempenho em OR com água de entrada ruim. Parâmetros críticos da

Leia Mais