Análises avançadas em resinas de troca iônica: além do básico

As análises avançadas em resinas são empregadas quando uma avaliação minuciosa é necessária, recebendo esta denominação por utilizarem equipamentos de elevada tecnologia para sua confecção.

A análise de Microscopia Eletrônica de Varredura (MEV) permite a visualização detalhada da estrutura da resina. Devido ao seu elevado grau de ampliação é possível observar trincas, filmes microbianos aderidos nas esferas de resina, defeitos nas esferas, distribuição de poros, entre outras avarias. Propriedades granulométricas como esfericidade, alongamento e formato também podem ser determinadas com o uso do MEV nas análises avançadas em resinas.

A Figura 1 apresenta microscopias realizadas para resina KH-80 em ampliações de 25 vezes e 140 vezes, respectivamente.

Figura 1

Para indicar a composição química da superfície da resina é possível utilizar o Espectroscópio de Energia Dispersiva (EDS) acoplado com o MEV. A composição química pode ser determinada através de: forma pontual, onde se analisa a composição em um ponto especificado da amostra; trajetória em linha, onde se analisa a composição em uma linha reta predefinida sobre a amostra; ou pela confecção de mapas químicos.

O Quadro 1 apresenta o uso do EDS para determinação química em amostra de resina KH-80 em duas condições diferentes, sendo a primeira delas a amostra coletada do abrandador, logo após sua regeneração, e a amostra regenerada novamente em laboratório com 10% de NaCl. Os dados apresentados no Quadro 1 apresentam o potencial desta técnica na verificação de problemas operacionais e na identificação de medidas corretivas para os equipamentos de troca iônica.

Esquerda: Amostra KH-80 antes da regeneração, aumento 140x, lente LEI, escala 100 µm. Análise de EDS realizada nos pontos destacados.

Direita: Amostra KH-80 após regeneração NaCl 10% wt., aumento 140x, lente LEI, escala 100 µm. Análise de EDS realizada nos pontos destacados.

Quadro 1 – Análise de EDS realizado em amostras de KH-80 para verificação de contaminantes e possível perda de eficiência de regeneração da resina.

Comentários: Foi identificada a presença de cálcio (Ca) e magnésio (Mg) para os 4 pontos avaliados sobre a esfera de resina KH-80 enviada para análise. Para os 4 pontos, a intensidade dos picos de Ca e Mg foram maiores que para o pico de sódio (Na). Este fato indica que a resina não está sendo regenerada de maneira adequada, mantendo grande parte do Ca e Mg em sua estrutura. Para a amostra de resina regenerada com NaCl 10% wt. antes do procedimento de microscopia eletrônica, com detecção espectroscópica de energia dispersiva, os picos de Ca e Mg desapareceram e a intensidade dos picos de Na aumentaram. Este fato indica boa eficiência de regeneração da resina KH-80, constatando que as propriedades de troca iônica da resina estão em funcionamento normal. O enxofre (S), carbono (C) e oxigênio (O) são correspondentes à estrutura polimérica e grupos funcionais da resina. A presença do ouro (Au) deve-se ao recobrimento superficial feito nas amostras para reflexão dos elétrons, possibilitando a geração de imagens no MEV.

A Figura 2 apresenta o mapeamento químico realizado sobre a superfície de uma esfera de KH-80, para os elementos sódio (Na+) e enxofre (S), ambos presentes nos grupos funcionais da resina, o sódio como o contra-íon, e o enxofre como parte fundamental do grupo sulfônico que caracteriza o grupo funcional das resinas catiônicas fortes.

Figura 2 – Mapeamento químico sobre superfície da resina KH-80 após sua regeneração com NaCl.

Além das informações a respeito da composição química da sua superfície, medidas precisas podem ser alcançadas a partir das imagens obtidas no MEV em análises avançadas em resinas. A Figura 3 apresenta a obtenção do diâmetro de uma esfera de KH-80.

Figura 3 – Determinação do diâmetro de uma esfera de resina KH-80.

As análises avançadas em resinas, oferecidas pela Liter, compõem um conjunto poderoso de ferramentas para identificação de problemas operacionais e determinação da origem dos transtornos enfrentados em plantas de tratamento de água por troca iônica.

Leia também: Análises periféricas em resinas de troca iônica: um importante acompanhamento

Compartilhe esse conteúdo:

Leia também

Água desmineralizada para caldeiras de alta pressão

Caldeiras de alta pressão são equipamentos destinados à produção e acumulação de vapor sob temperaturas e pressão superiores às do ambiente. O vapor produzido possui ampla aplicação em indústrias, abrangendo desde a geração de energia elétrica e movimentação de máquinas até aquecimento, limpeza e esterilização de equipamentos e superfícies. Devido às condições extremas de operação, a necessidade de controle e alta qualidade de água de alimentação se tornam essenciais para evitar adversidades operacionais, redução de eficiência e até mesmo a ocorrência de catástrofes maiores. A presença de íons de cálcio (Ca2+), magnésio (Mg2+) e sódio (Na+) na forma de carbonatos, bicarbonatos, sulfatos, cloretos e hidróxidos podem levar à incrustação nos sistemas, dificultando a troca de calor e o escoamento do fluido. A corrosão, por sua vez, é ocasionada pela presença de gases dissolvidos, como O₂ e CO₂, que reduzem a resistência mecânica dos materiais metálicos e comprometem a estrutura das caldeiras de alta pressão. A presença de sílica, especialmente em caldeiras de alta pressão, também é crítica, pois, nessas condições, a sílica pode volatilizar e ser arrastada com o vapor, provocando incrustações nas pás de turbinas de geração de energia, causando desbalanceamento, danos mecânicos e degradação da qualidade do vapor.

Leia Mais

Remoção de nitrato por troca iônica: a resina ideal e princípios de funcionamento

A remoção de nitrato (NO3–) presente na água utilizada para consumo humano além de necessária, é regulamentada pela portaria n° 888 do Ministério da Saúde, indicando que a concentração da substância deve ser mantida abaixo de 10 mg/L (em base N) de modo a evitar danos à saúde. Comumente se encontram fontes de água subterrânea com teores de NO3– acima do permitido, e quando isto ocorre, a troca iônica é sempre uma das alternativas consideradas como rota tecnológica para a remoção de nitrato. Para esta aplicação, as resinas aniônicas são aplicadas no ciclo Cl–, e após sua exaustão, são regeneradas com soluções de NaCl. As reações de troca iônica e regeneração são apresentadas abaixo. R representa a resina e seu grupo funcional sem fazer distinção quanto ao tipo de grupo funcional. Dois tipos de resinas podem ser utilizados para remoção de nitrato, sendo elas as Aniônicas Fortemente Básicas de tipo I (SBA Tipo I) e as resinas seletivas, sendo estas referidas como resinas com melhor desempenho e eficiência na remoção da substância. Em geral, a escolha entre esses dois tipos de resinas é feita levando em consideração a química da água, em especial a presença de sulfato (SO42-). Os fatores

Leia Mais