Como Funcionam os Injetores de Válvulas Runlucky: Parte II

No primeiro artigo Como Funcionam os Injetores de Válvulas Runlucky apresentamos os princípios físicos do funcionamento dos injetores e as famílias de injetores de acordo com a vazão operacional da válvula.

A seguir, a Liter irá se aprofundar nos modelos de injetores de válvulas Runlucky disponíveis e como selecionar o ideal, uma vez que este dispositivo é o principal responsável pelo bom funcionamento da etapa de regeneração das resinas de troca iônica utilizadas para montagem dos abrandadores e desmineralizadores.

Entenda a responsabilidade dos injetores de válvulas Runlucky

Os injetores são responsáveis por regular as vazões de sucção de produto químico, lavagem lenta e regeneração. A concentração de aplicação do regenerante é também controlada pelo modelo de injetor. A Tabela 1 apresenta todos os modelos de injetores disponíveis, os modelos de válvulas adequadas para o uso de cada injetor e os principais dados de processo para cada dispositivo.

Tabela 1 – Relação entre os modelos de injetores, as válvulas aplicáveis a cada modelo e principais dados de processo na condição padrão de pressão de entrada igual a 3 bar.

Durante a regeneração, a pressão negativa formada na garganta do injetor Venturi causa a sucção do regenerante armazenado e utilizado para regeneração. A Figura 1 apresenta um esquema das principais vazões envolvidas nesta etapa.

Figura 1 – Esquema do injetor Venturi funcionando na etapa de sucção do regenerante durante o processo de regeneração de resinas de troca iônica.

Como vemos na Figura 1, a vazão de água correspondente a (QL.L) se mistura com a vazão sugada pela baixa pressão na garganta do injetor (Qsucção) para formar uma única corrente (Qdreno). Desta forma, se considerarmos que as densidades de todos os fluxos e a densidade da água pura são aproximadas, podemos escrever o balanço de massas em termos de vazão volumétrica como:

Equação 1.

Portanto, vemos que se subtrairmos a vazão de dreno da vazão de lavagem lenta (dados apresentados na Tabela 1) obtemos a vazão de sucção do produto no interior do tanque contentor.

Se aplicarmos um balanço de massa por componentes para o regenerante, obtemos a Equação 2, que pode ser utilizada para calcular a concentração do produto químico no interior do tanque contentor (Creg,cont) a fim de atingir a concentração de aplicação (Creg,a) para determinado modelo de injetor.

Equação 2.

A Equação 2 é muito útil no projeto de sistemas de desmineralização, em que é preciso especificar a concentração de aplicação do HCl para resina catiônica (2 – 5%) e a concentração de NaOH para a resina aniônica (2 – 4%). Para abrandadores, nos quais o sal é deixado em saturação no tanque saleiro, a Equação 2 pode ser utilizada para calcular a concentração de aplicação (Creg,a) para determinado modelo de injetor, uma vez que sabemos que a concentração no contentor (Creg,cont) é igual a 26%.

Ao saber a vazão de dreno durante a etapa de sucção do regenerante podemos facilmente calcular as velocidades específicas de regeneração de acordo com a Equação 3.

Equação 3.

Onde VR é o volume de resina (L) e QPdreno é a vazão do dreno (L/h).

Desta forma, se os parâmetros de regeneração calculados ficarem fora dos limites recomendados, para a boa operação da resina pode-se alterar o modelo de injetor a fim de buscar adequação dos requisitos de regeneração.

Ao término da sucção de produto químico, a vazão Qsucção é cessada e inicia-se a lavagem lenta. A Figura 2 apresenta diagrama ilustrativo desta etapa.

Figura 2 – Vazões através do injetor Venturi ao término da sucção de regenerante.

Sendo assim, podemos calcular as velocidades específicas de lavagem lenta usando a Equação 4, e se a velocidade estiver fora dos limites recomendados, a alteração de injetor pode adequar a montagem do equipamento para maximizar a eficiência da regeneração.

Equação 4.

Onde VR é o volume de resina (L) e QPL.L é a vazão do dreno (L/h).

As vazões através do injetor comentadas até aqui são funções da pressão, ou seja, um aumento de pressão de entrada no injetor levará a um aumento da vazão através do injetor. Para prever como as variações de pressão influenciam no comportamento do injetor, pode ser utilizado o software de dimensionamento integrado (disponível em breve), desenvolvido pela Liter para auxiliar no processo de dimensionamento de equipamentos de troca iônica usando válvulas de controle da Runlucky.

Compartilhe esse conteúdo:

Leia também

Qualidade da água é decisiva para a performance das membranas de osmose reversa

A eficiência da osmose reversa (OR) está diretamente ligada a um ponto crítico: a qualidade da água de entrada. Quando essa qualidade é negligenciada, os impactos são imediatos, desde incrustações e crescimento biológico até falhas estruturais nas membranas. Por que a qualidade da água é tão importante? Embora o sistema de osmose reversa tenha alta capacidade de retenção de contaminantes, ele não foi projetado para atuar sozinho contra uma água bruta sem tratamento prévio. A osmose reversa é a etapa de polimento do processo, e não uma solução para corrigir falhas de pré-tratamento. Se os parâmetros da água de alimentação estiverem fora dos limites recomendados, os problemas surgem rapidamente: obstruções, redução do fluxo de permeado, aumento da pressão diferencial, baixa rejeição de sais e redução drástica da vida útil das membranas. Um dos principais indicadores da qualidade da água é o SDI (índice de densidade de sujeira), em que valores acima de 3 indicam alto risco de colmatação. Diversos contaminantes afetam diretamente a operação das membranas, incluindo: – Cloro livre, que pode oxidar membranas de poliamida; – Ferro e manganês, que se precipitam formando depósitos insolúveis; – Cálcio e magnésio, responsáveis por incrustações calcárias; – Sílica coloidal, difícil de remover

Leia Mais

Controle de pH e problemas com carbonato de cálcio na osmose reversa

O controle de pH surge como uma estratégia central na prevenção do problema de formação de incrustações, principalmente pelo carbonato de cálcio (CaCO₃), um dos principais responsáveis por perdas de desempenho e redução da vida útil das membranas de osmose reversa. A eficiência desses sistemas depende diretamente da qualidade da água de alimentação e do controle rigoroso de variáveis operacionais. Como o carbonato de cálcio prejudica as membranas de osmose reversa O carbonato de cálcio é um sal pouco solúvel que precipita quando a concentração de íons cálcio (Ca²⁺) e carbonato (CO₃²⁻) ultrapassa o limite de solubilidade. Esse depósito sólido, chamado de scaling, gera diversos efeitos indesejados, como o aumento da pressão diferencial, a redução da vazão de permeado, a elevação do consumo de energia e a diminuição da vida útil das membranas. Um dos principais fatores que favorecem a formação de carbonato de cálcio é justamente o pH da água. Quanto maior o pH, maior a tendência de precipitação. O controle de pH atua diretamente sobre as formas químicas do carbono inorgânico presentes na água. Variações no pH alteram o equilíbrio entre dióxido de carbono, ácido carbônico, bicarbonato e carbonato, modificando o risco de precipitação de CaCO₃: – pH

Leia Mais